Part Number Hot Search : 
SK59C 12S12 TZA1047 TPMPU101 300U80A MAX1634 300U80A 2SD20
Product Description
Full Text Search
 

To Download MAX20303 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ordering information appears at end of data sheet. general description the MAX20303 is a highly integrated and programmable power management solution designed for ultra-low-power wearable applications. it is optimized for size and efficiency to enhance the value of the end product by extending battery life and shrinking the overall solution size. a flexible set of power-optimized voltage regulators, including multiple bucks, boost, buck-boost, and linear regulators, provides a high level of integration and the ability to create a fully optimized power architecture. the quiescent current of each regulator is specifically suited for 1a (typ) to extend battery life in always-on applications. the MAX20303 includes a complete battery management solution with battery seal, charger, power path, and fuel gauge. both thermal management and input protection are built into the charger. the device also includes a factory programmable button controller with multiple inputs that are customizable to fit specific product ux requirements. three integrated led current sinks are included for indicator or backlighting functions, and an erm/lra driver with automatic resonance tracking is capable of providing sophisticated haptic feedback to the user. the device is configurable through an i 2 c interface that allows for programming various functions and reading device status, including the ability to read temperature and supply voltages with the integrated adc. this device is available in a 56-bump, 0.5mm pitch 3.71mm x 4.21mm, wafer-level package (wlp) and operates over the -40c to +85c extended temperature range. applications wearable devices iot benefts and features extend battery use time between battery charging ? 2 x micro-i q buck regulators (<1a i q (typ) each) ? 220ma output ? buck1: 0.8v to 2.375v in 25mv steps ? buck2: 0.8v to 3.95v in 50mv steps ? micro-i q lv ldo/load switch (1a i q (typ)) ? 1.16v to 2.0v input voltage ? 50ma output ? 0.5v to 1.95v output, 25mv steps ? micro-i q ldo/load switch (1a i q (typ)) ? 1.71v to 5.5v input voltage ? 100ma output ? 0.9v to 4v, 100mv steps ? micro-i q buck-boost regulator (1.3a i q (typ)) ? 250mw output ? 2.5v to 5v in 100mv steps easy-to-implement li+ battery charging ? wide fast charge current range: 5ma to 500ma ? smart power selector ? 28v/-5.5v tolerant input ? programmable jeita current/voltage profles minimize solution footprint through high integration ? safe output ldo ? 15ma when chgin present ? 5v or 3.3v ? haptic driver ? erm/lra driver with quick start and breaking ? automatic resonance tracking (lra only) support wide variety of display options ? micro-i q boost regulator (2.4a i q (typ)) ? 300mw output ? 5v to 20v in 250mv step ? 3 channel current sinks ? 20v tolerant ? programmable from 0.6 to 30ma optimize system control ? power-on/reset controller ? programmable push-button controller ? programmable supply sequencing ? factory shelf mode ? on-chip voltage monitor multiplexer and analog- to-digital converter (adc) 19-8738; rev 6; 10/17 MAX20303 wearable power management solution evaluation kit available
maxim integrated 2 table of contents general description ............................................................................ 1 applications .................................................................................. 1 benefits and features .......................................................................... 1 absolute maximum ratings ..................................................................... 12 package thermal characteristics ................................................................ 12 electrical characteristics ....................................................................... 12 typical operating characteristics ................................................................ 34 bump configuration ........................................................................... 40 bump description .............................................................................. 41 typical application diagram ..................................................................... 43 detailed description ........................................................................... 44 power regulation ........................................................................... 44 power switch and reset control ............................................................... 44 power sequencing .......................................................................... 53 current sink ............................................................................... 54 system load switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 smart power selector ........................................................................ 54 input limiter ............................................................................... 54 sar adc/monitor mux ...................................................................... 55 jeita monitoring with charger control .......................................................... 55 haptic driver ............................................................................... 55 erm ................................................................................... 57 lra ................................................................................... 57 driver amplitude ......................................................................... 57 automatic level compensation .............................................................. 57 haptic uvlo ............................................................................ 57 vibration timeout ........................................................................ 57 overcurrent/thermal protection ............................................................. 57 haptic driver lock ........................................................................ 58 interface modes ............................................................................ 58 pure-pwm (ppwm) ....................................................................... 58 real-time i 2 c (rti 2 c) ..................................................................... 58 external triggered stored pattern (etrg) ..................................................... 58 ram stored haptic pattern (ramhp) ........................................................ 58 fuel gauge ................................................................................ 61 modelgauge theory of operation ............................................................ 61 fuel-gauge performance .................................................................. 61 battery voltage and state of charge .......................................................... 62 MAX20303 wearable power management solution www.maximintegrated.com
maxim integrated 3 table of contents ( continued ) temperature compensation ................................................................ 62 impact of empty-voltage selection ........................................................... 62 battery insertion .......................................................................... 62 battery insertion debounce ................................................................. 62 battery swap detection .................................................................... 62 quick-start .............................................................................. 62 power-on reset (por) .................................................................... 62 hibernate mode .......................................................................... 63 alert interrupt ............................................................................ 63 sleep mode ............................................................................. 63 i 2 c interface .............................................................................. 63 applications information ........................................................................ 63 i 2 c interface ............................................................................... 63 start, stop, and repeated start conditions .................................................... 63 slave address ........................................................................... 64 bit transfer .............................................................................. 64 single-byte write ......................................................................... 64 burst write .............................................................................. 64 single byte read ......................................................................... 65 burst read .............................................................................. 66 acknowledge bits ......................................................................... 66 application processor interface ................................................................ 67 ap write ................................................................................ 67 ap read ................................................................................ 67 ap launch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 write-protected commands and fields ........................................................ 67 direct access i 2 c register map ................................................................. 68 direct access i 2 c register descriptions ........................................................... 70 interrupt registers ........................................................................... 70 status registers ............................................................................ 71 interrupt mask registers ...................................................................... 75 ap interface registers ....................................................................... 78 ldo direct register ......................................................................... 80 mpc direct registers ........................................................................ 81 haptic ram registers ....................................................................... 82 led direct registers ........................................................................ 83 haptic direct registers ....................................................................... 85 ap command register descriptions .............................................................. 88 MAX20303 wearable power management solution www.maximintegrated.com
maxim integrated 4 table of contents ( continued ) gpio config commands ..................................................................... 88 input current limit commands ................................................................. 93 thermal shutdown configuration commands ..................................................... 94 charger configuratoin commands .............................................................. 95 boost configuration commands ............................................................... 104 buck configuration commands ............................................................... 106 ldo configuration commands ................................................................ 112 charge pump configuration commands ........................................................ 116 sfout configuration commands ............................................................. 117 mon mux configuration commands ........................................................... 119 buck-boost configuration commands .......................................................... 121 haptic configuration commands .............................................................. 124 power and reset commands ................................................................. 137 register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 vcell register (0x02) ...................................................................... 140 soc register (0x04) ........................................................................ 140 mode register (0x06) ...................................................................... 140 version register (0x08) ................................................................... 140 fuel gauge i 2 c registers ..................................................................... 140 hibrt register (0x0a) ...................................................................... 141 config register (0x0c) .................................................................... 141 valrt register (0x14) ...................................................................... 142 crate register (0x16) ...................................................................... 142 vreset/id register (0x18) .................................................................. 142 status register (0x1a) ..................................................................... 143 reset indicator: ......................................................................... 143 alert descriptors: ........................................................................ 143 enable or disable vreset alert: ........................................................... 143 table registers (0x40 to 0x7f) .............................................................. 143 cmd register (0xfe) ....................................................................... 143 ordering information ......................................................................... 146 chip information ............................................................................. 146 package information ......................................................................... 146 revision history .............................................................................. 147 MAX20303 wearable power management solution www.maximintegrated.com
maxim integrated 5 list of figures figure 1a. pwrrstcfg = 0000 or 0001 ............................................................. 45 figure 1b. pwrrstcfg = 0010 or 0011 ............................................................. 46 figure 1c. pwrrstcfg = 0100 or 0101 ............................................................. 47 figure 1d. pwrrstcfg = 0110 .................................................................... 48 figure 1e. pwrrstcfg = 0111 .................................................................... 49 figure 1f. pwrrstcfg = 1000 .................................................................... 50 figure 2. the full MAX20303 boot sequence ....................................................... 52 figure 3. reset sequence programming ........................................................... 53 figure 4a. sample jeita pre charge profile ....................................................... 55 figure 4b. sample jeita fast charge profile ....................................................... 55 figure 4c. sample jeita maintain charge profile ................................................... 56 figure 5. charger state diagram ................................................................. 56 figure 6. read and write processes for ram ...................................................... 59 figure 7a. sample pattern stored in ram ......................................................... 61 figure 7b. haptic driver output of stored pattern .................................................... 61 figure 8. i 2 c start, stop and repeated start conditions ....................................... 63 figure 9. write byte sequence .................................................................. 64 figure 10. burst write sequence ................................................................. 65 figure 11. read byte sequence ................................................................. 65 figure 12. burst read sequence ................................................................. 66 figure 13. acknowledge ....................................................................... 66 figure 14. executing a write opcode and reading the MAX20303 response ............................. 67 figure 15. executing a read opcode and reading the MAX20303 response ............................. 67 figure 16. mode register format ............................................................... 141 figure 17. hibrt register format ................................................................ 141 figure 18. config register format .............................................................. 141 figure 19. valrt register format .............................................................. 142 figure 20. vreset/id register format .......................................................... 142 figure 21. status register format ............................................................. 143 MAX20303 wearable power management solution www.maximintegrated.com
maxim integrated 6 list of tables table 1. pwrrstcfg settings .................................................................... 51 table 2. sar adc full-scale voltages and conversions .............................................. 55 table 3. ramhp pattern storage format .......................................................... 60 table 4. hardwareid register (0x00) .............................................................. 70 table 5. firmwareid register (0x01) .............................................................. 70 table 6. int0 register (0x03) .................................................................... 70 table 7. int1 register (0x04) .................................................................... 70 table 8. int2 register (0x05) .................................................................... 71 table 9. status0 register (0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 table 10. status1 register (0x07) ................................................................ 72 table 11. status2 register (0x08) ................................................................ 73 table 12. status3 register (0x09) ................................................................ 73 table 13. systemerror register (0x0b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 table 14. intmask0 register (0x0c) ............................................................... 75 table 15. intmask1 register (0x0d) ............................................................... 76 table 16. intmask2 register (0x0e) ............................................................... 77 table 17. apdataout0 register (0x0f) ............................................................ 78 table 18. apdataout1 register (0x10) ............................................................ 78 table 19. apdataout2 register (0x11) ............................................................ 78 table 20. apdataout3 register (0x12) ............................................................ 78 table 21. apdataout4 register (0x13) ............................................................ 78 table 22. apdataout5 register (0x14) ............................................................ 79 table 23. apdataout6 register (0x15) ............................................................ 79 table 24. apcmdout register (0x17) ............................................................. 79 table 25. apresponse register (0x18) ............................................................ 79 table 26. apdatain0 register (0x19) .............................................................. 79 table 27. apdatain1 register (0x1a) .............................................................. 79 table 28. apdatain2 register (0x1b) ............................................................. 80 table 29. apdatain3 register (0x1c) ............................................................. 80 table 30. apdatain4 register (0x1d) ............................................................. 80 table 31. apdatain5 register (0x1e) ............................................................. 80 table 32. ldodirect register (0x20) .............................................................. 80 table 33. mpcdirectwrite register (0x21) ......................................................... 81 table 34. mpcdirectread register (0x22) ......................................................... 81 table 35. hptramaddr register (0x28) ........................................................... 82 MAX20303 wearable power management solution www.maximintegrated.com
maxim integrated 7 list of tables ( continued ) table 36. hptramdatah register (0x29) .......................................................... 82 table 37. hptramdatam register (0x2a) .......................................................... 82 table 38. hptramdatal register (0x2b) .......................................................... 82 table 39. ledstepdirect register (0x2c) .......................................................... 83 table 40. led0direct register (0x2d) ............................................................. 83 table 41. led1direct register (0x2e) ............................................................. 84 table 42. led2direct register (0x2f) ............................................................. 84 table 43. hptdirect0 register (0x30) .............................................................. 85 table 44. hptdirect1 register (0x31) .............................................................. 86 table 45. hptrti2camp register (0x32) .......................................................... 87 table 46. hptpatramaddr register (0x33) ......................................................... 87 table 47. 0x01 C gpio_config_write ............................................................. 88 table 48. gpio_config_write response .......................................................... 89 table 49. 0x02 C gpio_config_read ............................................................. 89 table 50. gpio_config_read response .......................................................... 89 table 51. 0x03 C gpio_control_write ............................................................. 89 table 52. gpio_control_write response .......................................................... 90 table 53. 0x04 C gpio_control_read ............................................................ 90 table 54. gpio_control_read response .......................................................... 90 table 55. 0x06 C mpc_config_write ............................................................. 90 table 56. mpc_config_write response ........................................................... 92 table 57. 0x07 C mpc_config_read ............................................................. 92 table 58. mpc_config_read response ........................................................... 92 table 59. 0x10 C inputcurrent_config_write ....................................................... 93 table 60. inputcurrent_config_write response ..................................................... 93 table 61. 0x11 C inputcurrent_config_read ....................................................... 93 table 62. inputcurrent_config_read response ..................................................... 94 table 63. 0x12 C thermalshutdown_config_read ................................................... 94 table 64. thermalshutdown_config_read response ................................................ 94 table 65. 0x14 C charger_config_write ........................................................... 95 table 66. charger_config_write response ........................................................ 97 table 67. 0x15 C charger_config_read ........................................................... 97 table 68. charger_config_read response ........................................................ 97 table 69. 0x16 C chargerthermallimits_config_write ................................................ 98 table 70. chargerthermallimits_config_write response ............................................. 98 MAX20303 wearable power management solution www.maximintegrated.com
maxim integrated 8 list of tables ( continued ) table 71. 0x17 C chargerthermallimits_config_read ................................................ 98 table 72. chargerthermallimits_config_read response ............................................. 99 table 73. 0x18 C chargerthermalreg_config_write ................................................. 99 table 74. chargerthermalreg_config_write response .............................................. 102 table 75. 0x19 C chargerthermalreg_config_read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 table 76. chargerthermalreg_config_read response ............................................. 102 table 77. 0x1a C charger_controlwrite ........................................................... 102 table 78. charger_controlwrite response ........................................................ 102 table 79. 0x1b C charger_controlread .......................................................... 103 table 80. charger_control_read response ....................................................... 103 table 81. 0x1c C charger_ jeitahyst_controlwrite ................................................ 103 table 82. charger_jeitahyst_controlwrite response .............................................. 103 table 83. charger_jeitahyst_controlread ....................................................... 103 table 84. charger_jeitahyst_controlread response .............................................. 103 table 85. 0x30 C bst_config_write .............................................................. 104 table 86. bst_config_write response ........................................................... 105 table 87. 0x31 C bst_config_read .............................................................. 105 table 88. bst_config_read response ........................................................... 105 table 89. 0x35 C buck1_config_write ........................................................... 106 table 90. buck1_config_write response ......................................................... 107 table 91. 0x36 C buck1_config_read ........................................................... 107 table 92. buck1_config_read response ......................................................... 108 table 93. 0x37 C buck1_dvsconfig_write ....................................................... 108 table 94. buck1_dvsconfig_write response ..................................................... 109 table 95. 0x3a C buck2_config_write ........................................................... 109 table 96. buck2_config_write response .......................................................... 110 table 97. 0x3b C buck2_config_read ............................................................ 110 table 98. buck2_config_read response ......................................................... 111 table 99. 0x3c C buck2_dvsconfig_write ........................................................ 111 table 100. buck2_dvsconfig_write response ..................................................... 112 table 101. 0x40 C ldo1_config_write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 table 102. ldo1_config_write response ......................................................... 113 table 103. 0x41 C ldo1_config_read ............................................................ 113 table 104. ldo1_config_read response ......................................................... 113 table 105. 0x42 C ldo2_config_write ............................................................ 114 MAX20303 wearable power management solution www.maximintegrated.com
maxim integrated 9 list of tables ( continued ) table 106. ldo2_config_write response ......................................................... 115 table 107. 0x43 C ldo2_config_read ............................................................ 115 table 108. ldo2_config_read response ......................................................... 115 table 109. 0x46 C chargepump_config_write ...................................................... 116 table 110. chargepump_config_write response ................................................... 116 table 111. 0x47 C chargepump_config_read ...................................................... 116 table 112. chargepump_config_read response ................................................... 117 table 113. 0x48 C sfout_config_write ........................................................... 117 table 114. sfout_config_write response ........................................................ 118 table 115. 0x49 C sfout_config_read ........................................................... 118 table 116. sfout_config_read response ........................................................ 118 table 117. 0x50 C monmux_config_write ......................................................... 119 table 118. monmux_config_write response ...................................................... 119 table 119. 0x51 C monmux_config_read ......................................................... 119 table 120. monmux_config_read response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 table 121. 0x53 C adc_measure_launch ........................................................ 120 table 122. adc_measure_launch response ..................................................... 120 table 123. 0x70 C bbst_config_write ............................................................. 121 table 124. bbst_config_write response ......................................................... 122 table 125. 0x71 C bbst_config_read ............................................................ 122 table 126. bbst_config_read response ......................................................... 123 table 127. 0xa0 C hpt_config_write0 ............................................................ 124 table 128. hpt_config_write0 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 table 129. 0xa1 C hpt_config_read0 ........................................................... 125 table 130. hpt_config_read0 response ......................................................... 126 table 131. 0xa2 C hpt_config_write1 ............................................................ 126 table 132. hpt_config_write1 response ......................................................... 127 table 133. 0xa3 C hpt_config_read1 ........................................................... 127 table 134. hpt_config_read1 response ......................................................... 127 table 135. 0xa4 hpt_config_write2 ........................................................... 128 table 136. hpt_config_write2 response ......................................................... 129 table 137. 0xa5 C hpt_config_read2 ........................................................... 129 table 138. hpt_config_read2 response ......................................................... 129 table 139. 0xa6 C hpt_sys_threshold_config_write ............................................... 129 table 140. hpt_sys_threshold_config_write response ............................................. 129 MAX20303 wearable power management solution www.maximintegrated.com
maxim integrated 10 list of tables ( continued ) table 141. 0xa7hpt_sys_threshold_config_read ................................................ 130 table 142. hpt_sys_threshold_config_read response ............................................. 130 table 143. 0xa8 C hpt_lock_config_write ....................................................... 130 table 144. hpt_lock_config_write response ..................................................... 130 table 145. 0xa9 C hpt_lock_config_read ....................................................... 130 table 146. hpt_lock_config_read response ..................................................... 130 table 147. 0xaa C hpt_emf_threshold_config_write ................................................ 131 table 148. hpt_emf_threshold_config_write response ............................................. 131 table 149. 0xab C hpt_emf_threshold_config_read ............................................... 131 table 150. hpt_emf_threshold_config_read response ............................................ 131 table 151. 0xachpt_autotune ................................................................ 131 table 152. hpt_autotune response ............................................................. 132 table 153. 0xad hpt_setmode .............................................................. 132 table 154. hpt_setmode response ............................................................. 132 table 155. 0xae hpt_setinitialguess .......................................................... 132 table 156. hpt_setinitialguess response ........................................................ 132 table 157. 0xaf hpt_setinitialdelay ........................................................... 133 table 158. hpt_setinitialdelay response ........................................................ 133 table 159. 0xb0hpt_setwindow ............................................................. 133 table 160. hpt_setwindow response ........................................................... 133 table 161. 0xb1 C hpt_setbackemfcycle ....................................................... 133 table 162. hpt_setbackemfcycle response ..................................................... 133 table 163. 0xb2hpt_setfullscale ............................................................ 134 table 164. hpt_setfullscale response .......................................................... 134 table 165. 0xb3hpt_sethptpattern ............................................................ 134 table 166. hpt_sethptpattern response ......................................................... 134 table 167. 0xb4hpt_setgain ................................................................. 134 table 168. hpt_setgain response .............................................................. 134 table 169. 0xb5hpt_setlock ................................................................ 135 table 170. hpt_setlock response .............................................................. 135 MAX20303 wearable power management solution www.maximintegrated.com
maxim integrated 11 list of tables ( continued ) table 171. 0xb6hpt_readresonancefrequency ................................................. 135 table 172. hpt_readresonancefrequency response ............................................... 135 table 173. 0xb7hpt_settimeout .............................................................. 135 table 174. hpt_settimeout response ............................................................ 135 table 175. 0xb8hpt_gettimeout .............................................................. 136 table 176. hpt_gettimeout response ........................................................... 136 table 177. 0xb9hpt_setblankingwindow ....................................................... 136 table 178. hpt_setblankingwindow response ..................................................... 136 table 179. 0xbahpt_setzcc ................................................................. 136 table 180. hpt_setzcc response .............................................................. 136 table 181. 0x80poweroff_command .......................................................... 137 table 182. poweroff_command response ....................................................... 137 table 183. 0x81 C softreset_command .......................................................... 137 table 184. softreset_command response ....................................................... 137 table 185. 0x82hard-reset_command ......................................................... 138 table 186. hard-reset_command response ...................................................... 138 table 187. 0x83stayon_command ............................................................ 138 table 188. 0x83stayon_command response ................................................... 139 table 189. 0x84poweroff_command_delay ..................................................... 139 table 190. poweroff_command_delay response .................................................. 139 table 191. register summary .................................................................. 140 table 192. register bit default values ........................................................... 144 table 193. register bit default values ........................................................... 146 table 194. i 2 c direct register default values ....................................................... 147 table 195. read opcode default values .......................................................... 148 MAX20303 wearable power management solution www.maximintegrated.com
bat, sys, mon, pfn1, pfn2, thm, int , rst , sda, scl, cell, alrt , ctg, qstrt, l2in, bbout ................................................................ -0.3v to +6v vdig, l1in ........................................................... -0.3v to +2.2v chgin ...................................................................... -6v to +30v cap, sfout .......................... -0.3v to min(|chgin| + 0.3, +6)v tpu ........................................................... -0.3v to vdig + 0.3v set .............................................................. -0.3v to bat + 0.3v mpc0, mpc1, mpc2, mpc3, mpc4, drp, drn, bk1lx, bk2lx, bk1out, bk2out, cpp, bstlvlx, bblvlx ........................ -0.3v to sys + 0.3v l1out ........................................................ -0.3v to l1in + 0.3v l2out ........................................................ -0.3v to l2in + 0.3v cpp .................................................... cpn C 0.3v to cpn + 6v cpout ............................... cpp C 0.3v to min(cpp + 6, +12)v bsthvlx, bstout, led0, led1, led2 ............. -0.3v to +22v bsthvlx to bstout .......................................... -22v to +0.1v bbhvlx ................................. -0.3v to min (bbout + 0.3, +6)v agnd, dgnd, bk1gnd, bk2gnd, bstgnd, hdgnd, bbgnd to gsub .............................. -0.3v to +0.3v continuous current into bat, sys ........... -1000ma to +1000ma continuous current into chgin ..................... -1ma to +1000ma continuous current into drp, drn ............. -600ma to +600ma continuous current into any other terminal -100ma to +100ma continuous power dissipation (multilayer board at +70c): 7 x 8 array 56-ball, 3.71mm x 4.21mm, 0.5mm pitch wlp (derate 29.98mw/c) .... 2399mw operating temperature range ........................... -40c to +85c junction temperature ...................................................... +150c storage temperature range ............................ -65c to +150c lead temperature (soldering, 10s) ................................. +300c soldering temperature (reflow) ...................................... .+260c package thermal resistances were obtained using the method described in jedec specification jesd51-7, using a four-layer board. for detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial . absolute maximum ratings stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. these are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. exposure to ab solute maximum rating conditions for extended periods may affect device reliability. package information for the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages . note that a +, #, or - in the package code indicates rohs status only. package drawings may show a different suffix character, but the drawing pertains to the package regardless of rohs status. package type: 56 wlp package code w563a4+1 outline number 21-100104 land pattern number refer to application note 1891 thermal resistance, four-layer board junction to ambient ( ja ) 33.35c/w maxim integrated 12 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics parameter symbol conditions min typ max units global supply current charger input current i chgin v chgin = +5v, on state, charger disabled, buck1 enabled, no ldo enabled 1.3 ma bat input current i bat v chgin = 0v, of state, ldo2 disabled 0.4 a v chgin = 0v, of state, ldo2 enabled, l2in connected to bat 1.6 v chgin = 0v, on state, all blocks disabled, fuel gauge of 2.4 v chgin = 0v, on state, buck1 enabled, fuel gauge of 3.4 v chgin = 0v, on state, buck1 and buck2 enabled, fuel gauge of 3.9 internal supplies, bias, and uvlos v ccintuvlo rising threshold v vccint_ uvlo_r (note 2) 2.25 2.45 2.75 v v ccintuvlo falling threshold v vccint_ uvlo_f (note 2) 2.2 2.4 2.7 v v ccintuvlo threshold hysteresis v vccint_ uvlo_h (note 2) 50 mv internal cap regulator v cap v chgin = +4.3v to +28v 3.75 4.1 4.55 v capok rising threshold v cap_ok_r v chgin = v cap 3.15 3.4 3.6 v capok falling threshold v cap_ok_f v chgin = v cap 2.6 2.8 3 v capok threshold hysteresis v cap_ok_h 600 mv v bdet rising threshold v chgin_ det_r 4 4.15 4.3 v v bdet falling threshold v chgin_ det_f 3.2 3.3 3.4 v v bdet threshold hysteresis v chgin_ det_h 850 mv chgin detection debounce time t chgin_det_r chgin insertion 28 ms t chgin_det_f chgin detachment 20 sysuvlo rising threshold v sys_uvlo_r 2.65 2.75 2.85 v sysuvlo falling threshold v sys_uvlo_f 2.6 2.7 2.8 v sysuvlo threshold hysteresis v sys_uvlo_h 50 mv maxim integrated 13 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units batoc rising threshold i bat_oc_r from 200ma to 1a in 200ma steps, device specifc (see table 192) -40 +40 % batoc threshold hysteresis i bat_oc_h 6 % batoc rising debounce time t bat_oc_d 9 10 11 ms internal v dig regulator v vdig 1.68 1.8 2.0 v v diguvlo rising threshold v vdig_uvlo_r 1.61 1.71 v v diguvlo falling threshold v vdig_uvlo_f 1.51 1.61 v v diguvlo threshold hysteresis v vdig_uvlo_h 100 mv sfout sfout ldo voltage v sfout sfoutvset = 0 (+5v), v chgin = +6v, i sfout = 0ma 4.85 5 5.15 v sfoutvset = 0 (+5v), v chgin = +5v, i sfout = 15ma 4.9 sfoutvset = 1 (+3.3v), v chgin = +5v, i sfout = 0ma 3.15 3.3 3.45 sfoutvset = 1 (+3.3v), v chgin = +5v, i sfout = 15ma 3.29 sfout ovp voltage v sfout_ovp sfout ldo is turned of above v chgin_ov_r threshold v chgin ov_r v sfout thermal limit t sfout_lim 150 c sar adc and mon adc quiescent current i adc_q conversion running 30 a adc sys divider resistance r adc_sys_ div sys conversion running 2.2 m? a dc mon divider resistance r adc_mon_ div mon conversion running 2.2 m? adc chgin divider resistance r adc_chgin_ div chgin conversion running 1.1 m? adc cpout divider resistance r adc_cpout_ div cpout conversion running 0.82 m? adc bstout divider resistance r adc_bstout div bstout conversion running 0.89 m? adc sys least signifcant bit v adc_sys_ lsb 21.57 mv maxim integrated 14 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units adc mon least signifcant bit v adc_mon_ lsb 21.57 mv adc thm least signifcant bit v adc_thm_ lsb 0.39 %v dig adc chgin least signifcant bit v adc_chgin_ lsb 32.35 mv adc cpout least signifcant bit v adc_cpout_ lsb 32.35 mv adc bstout least signifcant bit v adc_ bstout_lsb 82.35 mv adc sys absolute sensing worst-case accuracy v adc_sys_ acc v sys = +2.6v -75 +75 mv v sys = +5.5v -133 +133 adc mon absolute sensing worst-case accuracy v adc_mon_ acc v mon = +1.0v -46 +46 mv v mon = +5.5v -133 +133 adc thm percentage sensing worst-case accuracy v adc_thm_ acc v thm = (5 to 95)%v dig -1.789 +1.789 %v dig adc chgin absolute sensing worst-case accuracy v adc_chgin_ acc v chgin = +3.0v -94 +94 mv v chgin = +8.0v -193 +193 adc cpout absolute sensing worst-case accuracy v adc_cpout_ acc v cpout = +5.0v -133 +133 mv v cpout = +6.6v -165 +165 adc bstout absolute sensing worst-case accuracy v adc_ bstout_acc v bstout = +3.0v -161 +161 mv v bstout = +21.0v -503 +503 adc conversion time t adc_conv 1.1ms (typ) additional delay prior to each 1 st conversion. 83 s thm input leakage i lk_thm -1 +1 a tpu switch resistance r tpu_sw 1ma max load on tpu 4 ? mon multiplexer output ratio v mon_div_rt no load on mon pin. inputs: bat, sys, bk1out, bk2out, l1out, l2out, sfout, bbout monratiocfg = 00 100 % monratiocfg = 01 50 monratiocfg = 10 33.33 monratiocfg = 11 25 maxim integrated 15 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units mon multiplexer output impedance r mon_div 100a load on mon pin. inputs: bat, sys, bk2out, bk1out, l2out, l1out, sfout, bbout monratiocfg = 00 5.5 k? no load on mon pin. inputs: bat, sys, bk2out, bk1out, l2out, l1out, sfout, bbout monratiocfg = 01 31 monratiocfg = 10 28 monratiocfg = 11 24 mon multiplexer of state pulldown resistance r mon_off_pd mon disabled, pulldown resistance enabled 59 k? ovp and input current limiter allowed chgin input voltage range v chgin_rng -5.5 +28 v chgin overvoltage rising threshold v chgin_ov_r sfout ldo is turned of above this threshold 7.2 7.5 7.8 v chgin overvoltage threshold hysteresis v chgin_ov_h 200 mv chgin valid trip point v chgn-sys_tp v chgin - v sys 30 145 290 mv chgin valid trip point hysteresis v chgin-sys_ tp-hys 275 mv input overcurrent max limit (t < t ilim_blank ) i lim_max ilimmax = 0/1, device specifc (see table 192) 450/1000 ma input current limit (t > t ilim_blank ) i lim ilimcnt = 000 50 ma ilimcnt = 001 90 ilimcnt = 010 150 ilimcnt = 011 200 ilimcnt = 100 300 ilimcnt = 101 400 ilimcnt = 110 450 ilimcnt = 111 1000 maxim integrated 16 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units input current limit blanking time t ilim_blank ilimblank = 00 0.003 ms ilimblank = 01 0.5 ilimblank = 10 1 ilimblank = 11 10 sys regulation voltage v sys_reg v bat_ reg + 0.14 v bat_ reg + 0.2 v bat_ reg + 0.26 v sys regulation voltage dropout v chgin-sys 40 mv chgin to sys on- resistance r chgin-sys 0.37 0.66 ? input current soft-start time i lim_sft 1 ms thermal shutdown temperature t chgin_shdn future option 50 c 60 70 80 90 100 110 MAX20303a,b,c,d 120 thermal shutdown timeout t chgin_shdn_ to tshdntmo = 01 0.5 s tshdntmo = 10 1 tshdntmo = 11 5 battery charger bat to sys on resistance r bat-sys v bat = 4.2v, i bat = 300ma 80 140 m? thermal regulation temperature t chg_lim t chgin_ shdn - 3 c bat-to-sys switch on threshold v bat-sys_on sys falling 10 22 35 mv bat-to-sys switch of threshold v bat-sys_off sys rising -3 -1.5 0 mv sys-bat charge current reduction threshold v sys-bat_lim measured as v sys - v bat , sysminvlt = 000, v bat > 3.6v 100 mv maxim integrated 17 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units minimum sys voltage v sys_lim v bat < 3.4v sysminvlt = 000 3.6 v sysminvlt = 001 3.7 sysminvlt = 010 3.8 sysminvlt = 011 3.9 sysminvlt = 100 4.0 sysminvlt = 101 4.1 sysminvlt = 110 4.2 sysminvlt = 111 4.3 charger current soft-start time t chg_soft 1 ms precharge current i pchg ipchg = 00 5 %i fchg ipchg = 01 9 10 11 ipchg = 10 20 ipchg = 11 30 precharge threshold v bat_pchg vpchg = 000 2.1 v vpchg = 001 2.25 vpchg = 010 2.4 vpchg = 011 2.55 vpchg = 100 2.7 vpchg = 101 2.85 vpchg = 110 3 vpchg = 111 3.15 precharge threshold hysteresis v bat_pchg_ hys 90 mv set current gain factor k set 2000 a/a set regulation voltage v set 1 v bat charge current set range i fchg r set = 400k? 5 ma r set = 40k? 45 50 55 r set = 4k? 500 maxim integrated 18 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units battery regulation voltage v bat_reg batreg = 0000 4.05 v batreg = 0001 4.10 batreg = 0010 4.15 batreg = 0011, t a = 25c 4.179 4.20 4.221 batreg = 0011 4.158 4.20 4.242 batreg = 0100 4.25 batreg = 0101 4.30 batreg = 0110 4.35 batreg = 0111 4.40 batreg = 1000 4.45 batreg = 1001 4.50 batreg = 1010 4.55 batreg = 1011 4.60 battery recharge threshold v bat_rechg batrechg = 00 70 mv batrechg = 01 120 batrechg = 10 170 batrechg = 11 220 maximum precharge time t pchg pchgtmr = 00 30 min pchgtmr = 01 60 pchgtmr = 10 120 pchgtmr = 11 240 maximum fast charge time t fchg fchgtmr = 00 75 min fchgtmr = 01 150 fchgtmr = 10 300 fchgtmr = 11 600 charge done qualifcation i chg_done chgdone = 00 5 %i fchg chgdone = 01 8.5 10 11.5 chgdone = 10 20 chgdone = 11 30 timer accuracy t chg_acc -10 10 % timer extend threshold (1/2 fast charge current comparator) t chg_ext see figure 5 50 %i fchg maxim integrated 19 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units timer suspend threshold (1/5 fast charge current comparator) t chg_sus see figure 5 20 %i fchg thm percentage sensing worst case accuracy v adc_thm_ acc v thm = (5 to 95)%v dig see adc section cool/cold threshold hysteresis falling, lsb = 0.39%v dig 0 to 31 lsb warm/hot threshold hysteresis rising, lsb = 0.39%v dig 0 to 31 lsb battery regulation voltage reduction due to battery pack temperature v bat_reg_ red cold/cool/room/warm/ hotbatreg = 00 batreg C 150mv v cold/cool/room/warm/ hotbatreg = 01 batreg C 100mv cold/cool/room/warm/ hotbatreg = 10 batreg C 50mv cold/cool/room/warm/ hotbatreg = 11 batreg fast charge current reduction due to battery pack temperature i fchg_fact cold/cool/room/warm/ hotfchg = 000 i fchg x 0.2 ma cold/cool/room/warm/ hotfchg = 001 i fchg x 0.3 cold/cool/room/warm/ hotfchg = 010 i fchg x 0.4 cold/cool/room/warm/ hotfchg = 011 i fchg x 0.5 cold/cool/room/warm/ hotfchg = 100 i fchg x 0.6 cold/cool/room/warm/ hotfchg = 101 i fchg x 0.7 cold/cool/room/warm/ hotfchg = 110 i fchg x 0.8 cold/cool/room/warm/ hotfchg = 111 i fchg bat uvlo threshold v bat_uvlo 1.9 2.05 2.2 v bat uvlo threshold hysteresis v bat_uvlo_ hys 50 mv maxim integrated 20 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units buck1 input voltage range v bk1in input voltage = v sys 2.7 5.5 v output voltage range v bk1out 25mv step resolution 0.8 2.375 v output voltage uvlo v uvlo_bk1 0.65 v quiescent supply current i q_bk1 i bk1out = 0, v sys = +3.7v, v bk1out = +1.2v 0.8 1.3 a dropout quiescent supply current iq_do_bk1 i bk1out = 0, v sys C v bk1o ut +0.1v 250 a shutdown supply current with active discharge enabled isd_bk1 buck 1 disabled, buck1actdsc = 1 60 a output average voltage accuracy acc_bk1 i bk1out = 1ma -3.2 +2.9 % peak-to-peak ripple v rpp_bk1 buck1iset = 0100 (100ma), c bk1out_eff = 2.2f, i bk1out = 1ma 10 mv peak current set range i pset_bk1 25ma step resolution. the accuracy of codes below 50ma is limited by t on_min_bk1 0 375 ma load regulation error v load_reg_ bk1 buck1iset = 0110 (150ma), buck1iadpten = 1, i bk1out = 300ma -3 % line regulation error v line_reg_ bk1 v bk1out = +1.2v, v sys from +2.7v to +5.5v 2 mv maximum operative output current i bk1_max v sys = +3.7v, buck1vset = 0x10 (+1.2v), buck1iset = 1000 (200ma), buck1iadpten = 1, load regulation error = -5% 220 ma bk1out pulldown current i pd_bk1_e buck 1 enabled 100 200 na bk1out pulldown resistance with buck disabled i pd_bk1_d buck 1 disabled, v sys = +3.6v, buck1vset = 0x10 (+1.2v) 12 m? pmos on-resistance r p_on_bk1 buck1fetscale = 0 0.35 0.49 ? r p_on_bk1_fs buck1fetscale = 1 0.7 0.98 nmos on-resistance r n_on_bk1 buck1fetscale = 0 0.25 0.4 ? r n_on_bk1_fs buck1fetscale = 1 0.5 0.7 freewheeling on- resistance r on_bk1_ frwhl v sys = +3.7v, buck1vset = 0x10 (+1.2v) 7 12 ? maxim integrated 21 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units minimum t on t on_min_bk1 60 90 ns maximum duty cycle d_max_bk1 buck1iadpten = 1 95 % switching frequency freq_bk1 load regulation error = -5% 3 mhz average current during short-circuit to gnd i shrt_bk1 buck1iset = 0110 (150ma), buck1iadpten = 1, v bk1out = 0v 100 ma bk1lx leakage current i lk_bk1lx buck 1 disabled 1 a active discharge current i actd_bk1 v bk1out = +1.2v 8 19 35 ma passive discharge resistance r psv_bk1 10 k? full turn-on time t on_bk1 time from enable to full current capability 58 ms efciency effic_bk1 buck1vset = 0x10 (+1.2v), i bk1out = 10ma, buck1iset = 0111 (175ma), inductor: murata dfe201610e-2r2m 88.5 % bk1lx rising/falling slew rate slw_bk1 buck1lowemi = 0 2 v/ns slw_bk1_l buck1lowemi = 1 0.5 thermal shutdown threshold t shdn_bk1 140 c buck2 input voltage range v bk2in input voltage = v sys 2.7 5.5 v output voltage range v bk2out 50mv step resolution 0.8 3.95 v output voltage uvlo v uvlo_bk2 0.65 v quiescent supply current i q_bk2 i bk2out = 0ma, v sys = +3.7v, buck2vset = 0x08 (+1.2v) 0.9 1.4 a dropout quiescent supply current iq_do_bk2 i bk2out = 0ma, v sys C v bk2out +0.1v 250 a shutdown supply current with active discharge enabled isd_bk2 buck 2 disabled, buck2actdsc = 1 60 a output average voltage accuracy acc_bk2 i bk2out = 1ma, buck2vset 0x34 (+3.4v) -3.2 +2.9 % peak-to-peak ripple v rpp_bk2 buck2iset = 0100 (100ma), c bk2out_eff = 2.2f, i bk2out = 1ma 10 mv peak current set range i pset_bk2 25ma step resolution. the accuracy of codes below 50ma is limited by t on_min_bk2 0 375 ma maxim integrated 22 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units load regulation error v load_reg_ bk2 buck2iset = 0110 (150ma), buck2iadpten = 1, i bk2out = 300ma -3 % line regulation error v line_reg_ bk2 v bk2out = +1.2v, v sys from +2.7v to +5.5v 2 mv maximum operative output current i bk2_max v sys = +3.7v, buck2vset = 0x08 (+1.2v), buck2iset = 1000 (200ma), buck2iadpten = 1, load regulation error = -5% 220 ma bk2out pulldown current i pd_bk2_e buck 2 enabled 200 400 na bk2out pulldown resistance with buck disabled i pd_bk2_d buck 2 disabled, v sys = +3.6v, buck2vset = 0x10 (+1.2v) 8 m? pmos on-resistance r p_on_bk2 buck2fetscale = 0 0.35 0.49 ? r p_on_bk2_fs buck2fetscale = 1 0.7 0.98 nmos on-resistance r n_on_bk2 buck2fetscale = 0 0.25 0.4 ? r n_on_bk2_fs buck2fetscale = 1 0.5 0.7 freewheeling on-resistance r on_bk2_ frwhl v sys = +3.7v, buck2vset = 0x08 (+1.2v) 7 12 ? minimum t on t on_min_bk2 60 90 ns maximum duty cycle d_max_bk2 buck2iadpten = 1 95 % switching frequency freq_bk2 load regulation error = -5% 3 mhz average current during short-circuit to gnd i shrt_bk2 buck2iset = 0110 (150ma), buck2iadpten = 1, v bk2out = 0v 100 ma bk2lx leakage current i lk_bk2lx buck 2 disabled 1 a active discharge current i actd_bk2 v bk2out = +1.2v 8 19 35 ma passive discharge resistance r psv_bk2 10 k? full turn-on time t on_buck2 time from enable to full current capability 58 ms efciency effic_bk2 buck2vset = 0x08 (+1.2v), i bk2out = 10ma, buck2iset = 0111 (175ma), inductor: murata dfe201610e-2r2m 88.5 % bk2lx rising/falling slew rate slw_bk2 buck2lowemi = 0 2 v/ns slw_bk2_l buck2lowemi = 1 0.5 thermal shutdown threshold t shdn_bk2 140 c maxim integrated 23 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units hvboost input voltage range v bstin input voltage = v sys 2.7 5.5 v output voltage range v bstout 250mv step resolution 5 20 v output voltage uvlo v bstout_ uvlo v bstout - v sys -2.7 -2.2 -1.6 v quiescent supply current i q_bst i bstout = 0ma, v sys = +3.7v, bstvset = 0x00 (+5v), t a = 25c 2.4 9 a i bstout = 0ma, v sys = +3.7v, bstvset = 0x00 (+5v) 106 output average voltage accuracy acc_bst i bstout = 1ma, hvout < 13v -4 +2 % peak-to-peak ripple v rpp_bst bstiset = 0x0a (350ma), bstvset = 0x1c (+12v), c bstout_eff = 10f, l = 4.7h, i bstout = 1ma 5 mv peak current set range i pset_bst 25ma step resolution 100 475 ma dc load regulation error v load_reg_ bst bstvset = 0x1c (+12v), i bstout = 25ma, bstiset = 0x08 (300ma), bstiadpt e n = 1 0.3 % dc line regulation error v line_reg_ bst bstvset = 0x06 (+6.5v), v sys from +2.7v to +5.5v 4 mv maximum operative output power p max_bst bstiset = 0x08 (300ma), bstiadpten = 1 300 700 mw bstout pulldown resistance r bstout -3% load reg error 10 m? true shutdown pmos on-resistance r on_ts i bstout = 100ma 0.15 0.22 ? boost freewheeling nmos on-resistance r n_onfrw_n i bstout = 100ma 0.45 0.7 ? boost nmos on- resistance r onbst_n bstfetscale = 0, i bstout = 100ma 0.55 0.9 ? r onbst_nfs bstfetscale = 1, i bstout = 100ma 1.1 1.8 schottky diode forward voltage v be_ schottky i bstout = 100ma, v bsthvlx - v bstout 0.2 0.4 0.6 v freewheeling on- resistance r onbst_ frwhl i bstout = 100ma 50 80 ? minimum t on t on_bst_min 65 ns maxim integrated 24 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units max switching frequency freq_bst_ mx v bstout regulation error = -150mv. bstiset = 100ma, bstiadpten = 0. 1.7 3.5 5.5 mhz max peak current setting extra budget with bstiadpten = 1 ip_max bstiadpten = 1, v bstout regulation error = -200mv 150 250 450 ma short-circuit current limit diference vs. peak current setting ibst_shrt bstiadpten = 0 130 200 250 ma bsthvlx leakage current i lk_bsthvlx boost disabled 1 a bstlvlx leakage current i lk_bstlvlx boost disabled 1 a passive discharge resistance r bstpsv 10 k? linear bstout precharge current i l_bstout_ prch v bstout from 0 to v sys C 0.4v 5 12.5 20 ma switching precharge inductor current i sw_bstout_ prch v bstout from v sys C 0.4v to fnal regulation voltage 13 ma full turn-on time t on_bst time from enable to full current capability 100 ms efciency effic_12 bstvset = 0x1c (+12v), i bstout = 20ma, bstiset = 0x08 (300ma), inductor: murata dfe201610e-4r7m 85 % effic_15 bstvset = 0x28 (+15v), i bstout = 2ma, bstiset = 0x08 (300ma), inductor: murata dfe201610e-4r7m 83 effic_5 bstvset = 0x00 (+5v), i bstout = 10a, bstiset = 0x02 (150ma), inductor: murata dfe201610e-4r7m 76 effic_6p5 bstvset = 0x06 (+6.5v), i bstout = 10a, bstiset = 0x02 (150ma), inductor: murata dfe201610e-4r7m 73 bhvlx rising/falling slew rate slw_bst hvlx 2 v/ns thermal shutdown threshold t shdn_bst 125 c maxim integrated 25 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units buck-boost input voltage range v bbin input voltage = v sys 2.7 5.5 v quiescent supply current i q_bb i bbout = 0a, v bbout = +4v 1.3 2.1 a maximum output operative power p max_bbout v sys > +3v 250 mw output voltage set range v bbout 100mv step 2.5 5 v average output voltage accuracy acc_bbout i bbout = 1ma, c bbout_eff 10f -3 3 % line regulation error v line_reg_ bb v sys = +2.7v to +5.5v, i bbout = 10a, bbstvset = 0x0f (+4v), bbstiset = 0x02 (100ma) -1 +0.3 +1 %/v load regulation error v load_reg_ bb bbstvset = 0x0f (+4v), i bbout = 10a to 50ma, bbstiset = 0x02 (100ma) 100 mv/a bbstvset = 0x0f (+4v), i bbout = 10a to 100ma, bbstiset = 0x02 (100ma) 310 line transient v line_tran_ bb bbstvset = 0x0f (+4v), bbstiset = 0x02 (100ma), v sys from +2.7v to +5v, 0.2s rise time 15 mv load transient v load_ tran_bb i bbout = 0ma to 10ma, 200ns rise time, bbstvset = 0x0f (+4v), bbstiset = 0x02 (100ma) 9 mv i bbout = 0ma to 100ma, 200ns rise time, v bbout = +4v, bbstiset = 0x02 (100ma) 31 oscillator frequency f osc_bb 1.8 2 2.2 mhz output fets r on r on_pbk_bb high-side pmos buck fet 0.15 0.22 ? r on_nbk_bb low-side nmos buck fet 0.22 0.36 r on_pbst_bb high-side pmos boost fet (v bbout = +4v) 0.21 0.31 r on_nbst_bb low-side nmos boost fet 0.24 0.4 r on_frwh_bb emi improve fet between bbhvlx/ bblvlx 8 11 passive discharge pulldown resistance r pdl_bb bbstpasdsc = 1 10 k? active discharge current i actdl_bb bbstactdsc = 1, v bbout = +1.5v 6 19 38 ma maxim integrated 26 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units turn-on time t on_bb time from enable to full current capability 100 ms uvlo on bbout v bbout_uvlo 1.65 1.75 1.9 v precharge current i pc_bb precharge current. v sys = +2.7v, v bbout = +1.65v 6 14 24 ma pulse mode input current limit i pls_in bbstvset = 0x0f (+4v), v sys < v bbout C 0.5v, f sw = f osc_bbst /10, bbstiset = 0x02 (100ma) 6.6 ma pulse mode switching period ratio t_ratio f osc_bb /f sw 128 steps 10 138 average current during short-circuit to gnd i shrt_bb v bbout = 0v 0.4 0.75 1.1 a thermal shutdown threshold t shdn_bb t j rising 150 c thermal shutdown hysteresis t shdn_ hyst_bb 10 c ldo1 (typical values are at v l1in = +1.2v, v l1out = +1v) input voltage range v l1in ldo mode 1.16 2 v switch mode 0.7 2 quiescent supply current i q_l1 i l1out = 0a 1 2.1 a i l1out = 0a, switch mode 0.35 0.7 output leakage i lk_l1out v l1out = gnd, ldo 1 disabled 0.015 2.5 a quiescent supply current in dropout i q_l1_drp i l1out = 0a, v l1in = +1.2v, ldo1vset = 0x1d (+1.225v) 2.4 4.2 a maximum output current i l1out_max 50 ma output voltage v l1out 25mv step resolution 0.5 1.95 v output accuracy acc_ldo1 (v l1out + 0.2v) v l1in +2v, i l1out = 1ma -3.4 +3.9 % dropout voltage v drp_l1 v l1in = +1v, ldo1vset = 0x14 (+1v), i l1out = 50ma 63 mv line regulation error v line_reg_l1 v l1in = (v l1out + 0.2v) to +2v -0.5 +0.5 %/v load regulation error v load_reg_l1 +1v v l1in +2v , i l1out = 100a to 50ma 0.003 0.013 %/ma line transient v line_tran_ l1 v l1in = +1v to +2v, 200ns rise time 45 mv v l1in = +1v to +2v, 1s rise time 25 load transient v load_tran_ l1 i l1out = 0 to 10ma, 200ns rise time 80 mv i l1out = 0 to 50ma, 200ns rise time 130 maxim integrated 27 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units passive discharge resistance r pdl_l1 5 10 15 k? active discharge current i actdl_l1 7 25 55 ma switch mode on-resistance r on_l1 switch mode v l1in = +1v, i l1out = 50ma 1.02 ? v l1in = +0.7v, i l1out = 1ma 2.7 turn-on time t on_l1 i l1out = 0ma, time from 10% to 90% of ldo1vset 0.38 ms i l1out = 0ma, time from 10% to 90% of v l1in , switch mode 0.065 short circuit current limit i shrt_l1 v l1in = +1.2v, v l1out = 0v 165 310 405 ma v l1in = +1.2v, v l1out = 0v, switch mode 160 305 400 thermal shutdown temperature t shdn_l1 t j rising 150 c thermal shutdown temperature hysteresis t shdn_ hys_l1 20 c output noise 10hz to 100khz, v l1in = +2v v l1out = +1.8v 120 v rms v l1out = +1v 95 v l1out = +0.5v 70 uvlo v l1in_uvlo_f v l1in falling 0.53 0.77 v v l1in_uvlo_r v l1in rising 0.78 1 ldo2 (typical values at v l2in = +3.7v, v l2out = +3v) input voltage range v l2in ldo mode 1.71 5.5 v switch mode 1.2 5.5 quiescent supply current i q_l2 i l2out = 0a 1 1.7 a i l2out = 0a, switch mode. 0.35 0.7 quiescent supply current in dropout i q_l2_drp i l2out = 0a, v l2in = +2.9v, ldo2vset = 0x15 (+3v) 2.2 3.7 a maximum output current i l2out_max v l2in > +1.8v 100 ma output voltage v l2out 100mv step resolution 0.9 4 v output accuracy acc_ldo2 (v l2out + 0.5v) v l2in +5.5v, i l2out = 1ma -2.9 +2.9 % dropout voltage v drp_l2 v l2in = +3v, ldo2vset = 0x16 (+3.1v), i l2out = 100ma 100 mv v l2in = +1.85v, ldo2vset = 0x0a (+1.9v), i l2out = 100ma 130 mv maxim integrated 28 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units line regulation error v line_reg_l2 v l2in = (v l2out + 0.5v) to +5.5v -0.38 +0.38 %/v load regulation error v load_reg_ l2 +1.8v v l2in +5.5v i l2out = 100a to 100ma 0.002 0.005 %/ma line transient v line_tran_ l2 v l2in = +4v to +5v, 200ns rise time 35 mv v l2in = +4v to +5v, 1s rise time 25 load transient v load_tran_ l2 i l2out = 0ma to 10ma, 200ns rise time 100 mv i l2out = 0ma to 100ma, 200ns rise time 200 passive discharge resistance r pdl_l2 5 10 15 k? active discharge current i actdl_l2 8 22 40 ma switch mode on-resistance r on_l2 switch mode v l2in = +2.7v, i l2out = 100ma 0.7 ? v l2in = +1.8v, i l2out = 50ma 1 v l2in = +1.2v, i l2out = 5ma 2.3 turn-on time t on_l2 i l2out = 0ma, time from 10% to 90% of ldo2vset 1.5 ms i l2out = 0ma, time from 10% to 90% of v l2in . switch mode 0.26 short circuit current limit i shrt_l2 v l2in = +2.7v, v l2out = 0v 225 360 555 ma v l2in = +2.7v, v l2out = 0v, switch mode 210 350 540 thermal shutdown temperature t shdn_l2 t j rising 150 c thermal shutdown temperature hysteresis t shdn_hys_l2 20 c output noise 10hz to 100khz, v l2in = +5v v l2out = +3.3v 150 v rms v l2out = +2.5v 125 v l2out = +1.2v 90 v l2out = +0.9v 80 uvlo v l2in_uvlo v l2in falling 1.05 1.35 v v l2in rising 1.36 1.69 maxim integrated 29 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units charge pump input voltage v cpin input voltage = v sys 2.7 5.5 v quiescent supply current i q_cp_5v i cpout = 0a, cpvset = 1 (+5v) 2 3.5 a i q_cp_6.6v i cpout = 0a, cpvset = 0 (+6.6v) 2.2 4.3 cpout output voltage v cpout cpvset = 0, i cpout = 10a, v sys > +3.3v 6.6 v cpvset = 1, i cpout = 10a 5 output accuracy acc_cp i cpout < 120a, v sys > +3.3v -3 +3 % maximum operative output current i cpout_max v sys > +3.3v, -5% load regulation error 250 a efciency eff_cp cpvset = 0 (+6.6v), i out = 10a, v sys = +3.7v 79 % max charge pump frequency freq_cp 88 100 110 khz passive discharge resistance r psv_cp 10 k? haptic driver input voltage v hd_in input voltage = v sys 2.6 5.5 v quiescent current i hd_q v drp /v drn = 0 to v sys 1300 a h-bridge pwm output frequency f hd_pwm_out 22.5 25 27.5 khz h-bridge pwm output duty cycle resolution d hd_pwm_ out 7 bits v sys / 128 %v sys h-bridge output impedance in of state r hd_off hptofimp = 1 15 k? hptofimp = 0 r hd_on_ls ? h-bridge output leakage in high-z state i hd_lk_out during back emf detection, v drp /v drn = 0 to v sys -1 +1 a h-bridge on-resistance r hd_on_hs high-side pmos switch on, 300ma load 0.04 0.18 0.5 ? r hd_on_ls low-side nmos switch on, 300ma load 0.04 0.18 0.5 h-bridge overcurrent protection threshold i hd_oc_thr rising current through high-side or low-side 600 1000 1500 ma h-bridge overcurrent protection hysteresis i hd_oc_hys 130 ma maxim integrated 30 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units h-bridge thermal shutdown temperature threshold t hd_shdn_ thr rising temperature 150 c h-bridge thermal shutdown temperature hysteresis t hd_shdn_ hys 25 c pwm input frequency f hd_inpwm 10 250 khz lra resonance frequency tracking range f hd_lra see haptic driver section 120 305 hz startup latency t hd_start time from command to vibration response. see haptic driver section 10 12 ms led current sinks maximum input voltage v in_led_max 20 v quiescent current i q_led all leds on, v sys = 3.7v 245 370 a current sink setting range i led_rng ledistep = 00 (0.6ma steps) 0.6 15 ma ledistep = 01 (1ma steps) 1 25 ledistep = 10 (1.2ma steps) 1.2 30 led current accuracy acc_led i led_ = 13ma, t a = +25c, v led_ = +0.7v to +20v -2 +2 % i led_ = 13ma, v led_ = +0.7v to +20v -4 +4 i led _ = 0.6ma to 30ma , v led _ = +0.7v to +20v, t a = 25c -5 +5 % i led _ = 0.6ma to 30ma, v led _ = +0.7v to +20v -6 +6 % led dropout voltage v led_drop iled_set = 5ma, i led_ = 0.9 x 5ma 110 160 mv i led_set = 25ma, i led_ = 0.9 x 25ma 145 215 i led_set = 30ma, i led_ = 0.9 x 30ma 175 270 leakage in shutdown i lk_led v led_ = +20v 0.1 a open-led detection threshold v led_det led_ enabled, ledistep = 00, falling edge 61 92 140 mv maxim integrated 31 MAX20303 wearable power management solution www.maximintegrated.com
(v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units fuel guage supply voltage v cell (note 3) 2.5 4.5 v fuel-gauge soc reset (v reset register) v rst confguration range, in 40mv steps 2.28 3.48 v trimmed at 3v 2.85 3.0 3.15 supply current i dd0 sleep mode 0.5 2 a hibernate mode, reset comparator disabled (v reset .dis = 1) 3 5 hibernate mode, reset comparator enabled (v reset .dis = 0) 4 6 i dd1 active mode 23 40 time base accuracy t err active, hibernate modes (note 4) -3.5 +3.5 % ad sample period active mode 250 ms hibernate mode 45 s voltage error v err v cell = 3.6v, t a = +25c (note 5) -9 +6 mv/cell t a = -20c to +70c -23 +20 votlage-measurement resolution 1.25 mv/cell bat-to-cell on-resistance r on_iso v bat = 3.7v 15 30 ? bus low-detection timeout t sleep (notes 6, 7) 2.125 s digital sda, scl, mpc_, pfn_ input leakage current i lk_io input pullup/pulldown resistances disabled, input voltage from 0 to +5.5v -1 +1 a sda, scl, mpc_ input logic-high v io_ih 1.4 v sda, scl, mpc_ input logic-low v io_il 0.5 v pfn_ input logic-high v pfn_ih (note 2) 0.7 x v ccint v pfn_ input logic-low v pfn_il (note 2) 0.3 x v ccint v mpc_, pfn_ input pullup resistance r io_up pullup resistance to v ccint (note 2) 170 k? mpc_, pfn_ input pulldown resistance r io_pd 170 k? mpc_ output logic-high v io_oh i oh = 1ma, mpc_ confgured as push- pull output, pullup voltage is v bk2out v bk2ou t C 0.4 v maxim integrated 32 MAX20303 wearable power management solution www.maximintegrated.com
note 1: all devices are 100% production tested at t a = +25c. limits over the operating temperature range are guaranteed by design. note 2: v ccint is an internal voltage supply generated from either v bat or v cap . the source is determined by the following: if [(v chgin > v chgin_det and v cap > v cap_ok ) or v cap > (v bat + v thswover )] then v ccint = v cap else v ccint = v bat where v thswover = [0-300]mv note 3: all voltages are referenced to gnd. note 4: test performed on unmounted/unsoldered parts. note 5: the voltage is trimmed and verified with16x averaging. note 6: fuel gauge enters shutdown mode after scl < v il and sda < v il for longer than t sleep . note 7: guaranteed by design. (v bat = +3.7v, t a = -20c to +70c, unless otherwise noted. typical values are at t a = +25c. c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 10f, c bk2out_eff = 10f, c l1in = 1f, c l2in = 1f, c l1out = 1f, c l2out = 1f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h). (note 1) electrical characteristics (continued) parameter symbol conditions min typ max units sda, rst , int , mpc_, pfn_ output logic-low v io_ol i ol = 4ma 0.4 v sda, scl bus low- detection current i pd v sda = v scl = +0.4v 0.2 0.4 a scl clock frequency f scl 0 400 khz bus free time between a stop and start condition t buf 1.3 s start condition (repeated) hold time t hd_sta 0.6 s low period of scl clock t low 1.3 s high period of scl clock t high 0.6 s setup time for a repeated start condition t su_sta 0.6 s data hold time t hd_dat 0 0.9 s data setup time t su_dat 100 s setup time for a stop condition t su_sto 0.6 s spike pulse widths suppressed by input filter t sp 50 ns maxim integrated 33 www.maximintegrated.com MAX20303 wearable power management solution
v bat = +3.7v, c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 15f, c bk2out_eff = 10f, c l1in = 22f, c l2in = 22f, c l1out_eff = 15f, c l2out_eff = 10f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h, t a = +25c, unless otherwise noted. typical operating characteristics 0 2 4 6 8 10 12 14 16 -40 -15 10 35 60 85 i bat (a) temperature ( c) i bat v s . temperature off mode toc02 on mode, regulators off bucks on off mode, ldo2 on bucks, l1in = b1out, l2in = bat 0 10 20 30 40 50 60 -40 -15 10 35 60 85 i chg (ma) temperature ( c) i chg v s . temperature v bat = 2.7v pre charge toc03 v bat = 3.7v fast charge r set = 40k ? 0 1 2 3 4 5 6 7 2.7 3.2 3.7 4.2 i bat (a) v bat (v) i bat y v bat off mode toc01 on mode, regulators off bucks on off mode, ldo2 on bucks on, l1in = b1out, l2in = bat 4.1 4.15 4.2 4.25 4.3 -40 -15 10 35 60 85 v bat_reg (v) temperature ( c) v bat_reg v s . temperature toc04 v chgin = 5v 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 2 3 4 5 6 7 8 v sys (v) v chgin (v) i sys vs. v chgi n toc06 v bat = 2.7v 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 0 50 100 150 200 250 i bat (ma) v bat (v) time (minutes) i bat / v bat vs. time toc05 150mahr battery vpchg = 3.15v ipchg = 5% ifchg v chgin = 5v r set = 40.2k ? v bat i bat 0 10 20 30 40 50 60 70 80 90 100 0.001 0.1 10 1000 efficiency (%) i bk1out (ma) v bat = 3.7v buck1iset = 175ma buck1 efficiency v s . l oad toc07 v bat = 3.3v buck1iset = 175ma v bat = 4.2v buck1iset = 200ma buck1vset = 1.2v maxim integrated g 34 www.maximintegrated.com MAX20303 wearable power management solution
v bat = +3.7v, c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 15f, c bk2out_eff = 10f, c l1in = 22f, c l2in = 22f, c l1out_eff = 15f, c l2out_eff = 10f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h, t a = +25c, unless otherwise noted. typical operating characteristics (continued) 80 81 82 83 84 85 86 87 88 89 90 50 100 150 200 250 300 350 400 efficiency (%) buck1iset (ma) buck1 efficiency v s bu c k 1iset [ 3: 0] setting toc08 buck1vset = 1.2v i bk1out = 10ma 0 0.5 1 1.5 2 2.5 3 0 100 200 300 400 frequency (mhz) i bk1out (ma) buck1 switching frequency v s . l oad adaptive peak current enabl ed toc10 v bat = 3.3v v bat = 4.2v buck1vset = 1.2v buck1iadpten = 1 v bat = 3.7v 1.14 1.15 1.16 1.17 1.18 1.19 1.2 1.21 1.22 0 100 200 300 400 v bk1out (v) i bk1out (ma) buck1 l oad regul ation toc09 v bat = 3.3v v bat = 4.2v buck1vset = 1.2v buck1iadpten = 1 v bat = 3.7v 0 0.5 1 1.5 2 2.5 3 3.5 0 50 100 150 frequency (mhz) i bk1out (ma) buck1 switching frequency v s . l oad adpative peak current disabl ed toc11 v bat = 3.3v v bat = 4.2v buck1vset = 1.2v buck1iadpten = 0 v bat = 3.7v 10mv/div (ac - coupled) 50ma/div toc12 10ms/div buck1 l oad transient v outn v inside v backup v bk1out i bk1out buck1vset = 1.2v 0 10 20 30 40 50 60 70 80 90 100 0.001 0.1 10 1000 efficiency (%) i bk2out (ma) v bat = 3.7v buck2iset = 175ma buck2 efficiency v s . l oad toc13 v bat = 3.3v buck2iset = 200ma v bat = 4.2v buck2iset = 225ma buck2vset = 1.8v maxim integrated 35 www.maximintegrated.com MAX20303 wearable power management solution
v bat = +3.7v, c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 15f, c bk2out_eff = 10f, c l1in = 22f, c l2in = 22f, c l1out_eff = 15f, c l2out_eff = 10f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h, t a = +25c, unless otherwise noted. typical operating characteristics (continued) 80 82 84 86 88 90 92 94 50 100 150 200 250 300 350 400 efficiency (%) buck2iset (ma) buck2 efficiency v s bu c k 2iset [ 3: 0] setting toc14 buck2vset = 1.8v i bk2out = 10ma 0 0.5 1 1.5 2 2.5 0 100 200 300 400 frequency (mhz) i bk2out (ma) buck2 switching frequency v s . l oad adaptive peak current enabl ed toc16 v bat = 3.3v v bat = 4.2v buck2vset = 1.8v buck2iadpten = 1 v bat = 3.7v 1.72 1.74 1.76 1.78 1.8 1.82 1.84 0 100 200 300 400 v bk2out (v) i bk2out (ma) buck2 l oad regul ation toc15 v bat = 3.3v v bat = 4.2v buck2vset = 1.8v v bat = 3.7v 0 0.5 1 1.5 2 2.5 3 3.5 4 0 50 100 150 frequency (mhz) i bk2out (ma) buck2 switching frequency v s . l oad adaptive peak current disabl ed toc17 v bat = 3.3v v bat = 4.2v buck2vset = 1.8v buck2iadpten = 0 v bat = 3.7v 10mv/div (ac - coupled) 50ma/div toc18 10ms/div buck2 l oad transient v outn v inside v backup v bk2out i bk2out buck2vset = 1.8v 0 10 20 30 40 50 60 70 80 90 100 0.001 0.01 0.1 1 10 100 efficiency (%) i bstout (ma) v bat = 3.7v bstiset = 250ma boost efficiency v s . l oad toc19 v bat = 3.3v bstiset = 275ma v bat = 4.2v bstiset = 275ma boostvset = 12v maxim integrated 36 www.maximintegrated.com MAX20303 wearable power management solution
v bat = +3.7v, c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 15f, c bk2out_eff = 10f, c l1in = 22f, c l2in = 22f, c l1out_eff = 15f, c l2out_eff = 10f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h, t a = +25c, unless otherwise noted. typical operating characteristics (continued) 80 81 82 83 84 85 86 87 88 5 10 15 20 efficiency (%) v bstout (v) boost efficiency v s . v bstout toc20 i bstout = 10ma bstiset = optimal (see toc21) 9 9.5 10 10.5 11 11.5 12 12.5 0 20 40 60 80 100 v bstout (v) i bstout (ma) boost l oad regul ation toc22 v sys = 3.3v v sys = 4.2v bstvset = 12v v sys = 3.7v 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 5 7.5 10 12.5 15 17.5 20 bstiset (ma) v bstout (v) optimal bs t iset [ 3: 0] setting v s . v bstout l bstout = 4.7h murata dfe201610e - 4r7m i bstout = 10ma toc21 i bstout = 10ma l bstout = murata dfe201610e - 4r7m 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 20 40 60 80 100 frequency (mhz) i bstout (ma) boost switching frequency v s . l oad adaptive peak current enabl ed toc23 v sys = 3.3v v sys = 4.2v bstvset = 12v bstiadpten = 1 v sys = 3.7v 0 0.5 1 1.5 2 2.5 3 0 20 40 60 80 100 frequency (mhz) i bstout (ma) boost switching frequency v s . l oad adaptive peak current disabl ed toc24 v sys = 3.3v v sys = 4.2v bstvset = 12v bstiadpten = 0 v sys = 3.7v 50mv/div (ac - coupled) 20ma/div toc25 10ms/div boost l oad transient v outn v inside v backup v bstout i bstout bst2vset = 12v maxim integrated 37 www.maximintegrated.com MAX20303 wearable power management solution
v bat = +3.7v, c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 15f, c bk2out_eff = 10f, c l1in = 22f, c l2in = 22f, c l1out_eff = 15f, c l2out_eff = 10f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h, t a = +25c, unless otherwise noted. typical operating characteristics (continued) 0 10 20 30 40 50 60 70 80 90 100 0.001 0.01 0.1 1 10 100 efficiency (%) i bbout (ma) v sys = 3.7v buck - boost efficiency v s . l oad toc26 v sys = 3.3v v sys = 4.2v bbst2vset = 4v 50mv/div (ac - coupled) 50ma/div toc28 20ms/div buck - boost l oad transient v outn v inside v backup v bbstout i bbstout bbstvset = 4v 50 55 60 65 70 75 80 85 90 95 2.7 3.7 4.7 5.7 efficiency (%) v sys (v) buck - boost efficiency v s . sys vol tage toc27 bbstvset = 4v i bbout = 10ma 0 10 20 30 40 50 60 70 80 0 50 100 150 200 250 efficiency (%) i cpout (a) charge pump efficiency vs. load 5v setting toc29 v sys = 3.3v v sys = 3.7v v sys = 4.2v cpvset = 5v 0 10 20 30 40 50 60 70 80 90 100 0 50 100 150 200 250 efficiency (%) i cpout (a) charge pump efficiency vs. load 6.6v setting toc30 v sys = 3.3v v sys = 3.7v v sys = 4.2v cpvset = 6.6v 0.985 0.99 0.995 1 1.005 1.01 1.015 0 20 40 60 80 100 v l1out (v) i l1out (ma) l do1 l oad regul ation toc31 v sys = 3.3v v sys = 3.7v v sys = 4.2v ldo1vset = 1v maxim integrated 38 www.maximintegrated.com MAX20303 wearable power management solution
v bat = +3.7v, c sfout = 1f, c vdig = 1f, c cap = 1f, c sys = 10f, c bk1out_eff = 15f, c bk2out_eff = 10f, c l1in = 22f, c l2in = 22f, c l1out_eff = 15f, c l2out_eff = 10f, c cpp = 27nf, c bstout_eff = 10f, c bbout_eff = 10f, l bk1 = 2.2h, l bk2 = 2.2h, l bstout = 4.7h, l bbout = 4.7h, t a = +25c, unless otherwise noted. typical operating characteristics (continued) 50mv/div (ac - coupled) 50ma/div toc32 20ms/div l do1 l oad transient v outn v inside v backup v l1out i l1out ldo1vset = 1v 50mv/div (ac - coupled) 50ma/div toc34 20ms/div l do2 l oad transient v outn v inside v backup v l2out i l2out ldo2vset = 3v 2.985 2.99 2.995 3 3.005 3.01 3.015 0 20 40 60 80 100 v l2out (ma) i l2out (ma) l do2 l oad regul ation toc33 v sys = 3.3v v sys = 3.7v v sys = 4.2v ldo2vset = 3v 0 100 200 300 400 500 600 700 800 -25 -15 -5 5 15 25 time to lock (ms) initial guess error (%) time to resonance l ock v s . initial guess error (estimated by vibration ampl itude) toc35 emfskipcyc = 0x01, widlpgain = 0x04 emfskipcyc = 0x00, widlpgain = 0x03 emfskipcyc = 0x00, widlpgain = 0x02 lra = samsung dmjbrn1030bk 500mv/div (ac - coupled) 2v/div toc36 100ms/div haptic driver l ra sel f tuning in i gs s cl ose to resonant frequency v outn v inside v backup vibration amplitude drp frequency = 211.8hz inigss = 200hz toc37 40ms/div haptic driver l ra sel f tuning error in in i gs s resonance setting v outn v inside v backup error = - 10% error = 3% error = 0% error = 3% error = 10% narlpgain = 0x02 widlpgain = 0x04 emfskipcyc = 0x01 lra vibration amplitude maxim integrated 39 www.maximintegrated.com MAX20303 wearable power management solution
bump confguration maxim integrated 40 MAX20303 wearable power management solution www.maximintegrated.com
bump description bump name function a1 drn erm/lra haptic driver negative output. a2 drp erm/lra haptic driver positive output. a3 hdgnd haptic driver ground. a4, h4 sys system load connection. connect to the system load. both sys bumps should be connected on pcb through a low-impedance trace. bypass common node with a minimum 10f capacitor to gnd. a5 l2out ldo output. bypass with 1f capacitor to gnd. a6 bk2gnd buck 2 ground. a7 bk2lx buck2 regulator switch. connect through 2.2h inductor to bk2out. b1 scl i 2 c serial clock input. b2 sda i 2 c serial data input/open-drain output. b3 cpp charge pump capacitor positive terminal. connect 22nf (min), 33nf (max) capacitor to cpn. b4 cpn charge pump capacitor negative terminal. connect to 22nf (min), 33nf (max) capacitor to cpp. b5 cpout charge pump output. bypass with 1f capacitor to gnd. b6 l2in ldo2 input. bypass with 1f capacitor to gnd. b7 bk2out buck2 regulator output. bypass with 10f capacitor to gnd. c1 led2 current sink output 2. c2 dgnd digital ground. c3 mpc4 multipurpose control i/o 4. c4 mpc1 multipurpose control i/o 1. c5 mpc0 multipurpose control i/o 0. c6 cell fuel gauge voltage. bypass with 0.1f capacitor to gnd. c7 bbout buck-boost regulator output. bypass with 10f capacitor to gnd. d1 led1 current sink output 1. d2 pfn1 confgurable power mode control pin (e.g., kin ). d3 gsub substrate connection. connect to ground. d4 vdig internal reference supply. bypass with 1f capacitor to gnd. d5 ctg fuel gauge. connect to gnd. d6 qstrt fuel gauge quick start input. d7 bbgnd buck-boost ground. e1 led0 current sink output 0. e2 pfn2 confgurable power mode control pin (e.g., kout ). e3 mon monitor multiplexer output. e4 cap internal reference supply. bypass with 1f capacitor to gnd. e5 agnd analog ground. maxim integrated 41 MAX20303 wearable power management solution www.maximintegrated.com
bump description (continued) note: all capacitance values listed in this document refer to effective capacitance. be sure to specify capacitors that will meet these requirements under typical operating conditions taking into consideration the effects of voltage and temperature. bump name function e6 alrt fuel gauge alert output. e7 bbhvlx buck-boost regulator switch hv side. connect through a 3.3h or 4.7h inductor to bblvlx. f1 bstout boost regulator output. bypass with 10f capacitor to gnd. f2 sfout safe out ldo. bypass with 1uf capacitor to gnd. f3 set external resistor for battery charge current level setting. do not connect any capacitance on this pin; maximum allowed capacitance (c set < 5s/r set )pf. f4 tpu battery temperature thermistor measurement pullup (internally connected to v dig during battery temperature thermistor measurement). do not exceed 1ma load on tpu. f5 thm battery temperature thermistor measurement connection. f6 rst reset output. active-low, open-drain output. f7 bblvlx buck-boost regulator switch lv side. connect through a 3.3h or 4.7h inductor to bbhvlx. g1 bstgnd high-voltage boost ground. g2 int interrupt open-drain output. g3 mpc3 multipurpose control i/o 3. g4 mpc2 multipurpose control i/o 2. g5 l1out ldo1 output. bypass with 1f capacitor to gnd. g6 l1in ldo1 input. bypass with 1f capacitor to gnd. g7 bk1out buck1 regulator output. bypass with 10f capacitor to gnd. h1 bsthvlx boost regulator switch. connect through a 4.7h inductor to bstlvlx. h2 bstlvlx boost regulator switch. connect through a 4.7h inductor to bsthvlx. h3 bat battery connection. connect to positive battery terminal. bypass with a minimum 1f capacitor to gnd. h5 chgin +28v/-5.5v protected charger input. bypass with 1f capacitor to gnd. h6 bk1gnd buck 1 ground. h7 bk1lx buck1 regulator switch. connect through a 2.2h inductor to bk1out. maxim integrated 42 MAX20303 wearable power management solution www.maximintegrated.com
typical application diagram f u e l g a u g e p o w e r s w i t c h l i + batt e r y cha r g e r w i t h s m a r t p o w e r sel e c t o r saf e l d o c o n t r o l m o n i t o r m u x sar a d c h ap t i c dr i ver curr e n t s i n k s h v _ l d o / s w b uc k 1 l v _ l d o / s w b uc k 2 ch a r g e p u m p b oo s t b uc k - b oo s t ch g i n c tg q s t r t a l r t c e l l set s f o u t s c l s d a i n t m p c 0 m p c 1 m p c 2 m p c 3 m p c 4 m o n dr p dr n l e d 0 l e d 1 l e d 2 r s t p fn 2 p fn 1 v d i g c a p t p u l 2 o u t t h m bat sys l 2 i n b k 1 l x b k 1 o u t l 1 o u t l 1 i n b k 2 l x b k 2 o u t c p o u t c p p c p n bst l v l x bst h v l x bst o u t bbl v l x bbh v l x bbo u t v sys v l d o v s w + 6 . 6 v v sys v bst v i o v i o v u s b a l r t 0 . 1 f 1 f 1 f s c l s d a i n t g p i o g p i o g p i o g p i o g p i o m o n b u zz e r e r m / l r a 1 0 f 4 . 7 h 4 . 7 h 1 0 f 27nf 1 f 1 0 f 1 0 f v b 2 v b 1 2 . 2 h 2 . 2 h 1 f 1 f 1 0 f 1 f 1 f 1 f p fn 2 r s t p fn 1 maxim integrated 43 MAX20303 wearable power management solution www.maximintegrated.com
detailed description power regulation the MAX20303 features two high-efficiency, low quiescent current buck regulators, a buck-boost regulator, a high- voltage boost regulator, a charge pump, and two low quiescent current, low-dropout (ldo) linear regulators that are configurable as load switches. additionally, a safe-output ldo is available when there is a valid voltage present at chgin. this sfout regulators output is configurable to 3.3v or 5v. excellent light-load efficiency allows the switching regulators to run continuously without significant energy cost. the buck and boost regulators can operate in a fixed peak current mode for low-current applications, as well as an adaptive peak current mode to improve load regulation, extend the high-efficiency range, and minimize capacitor size when more current is required. power switch and reset control the MAX20303 features a power switch that provides the ability to execute a reset sequence or to turn off the main system power and enter off mode to extend battery life. shutdown and reset events are triggered by an external control through the power function (pfn) control inputs, i 2 c commands, or if other conditions are met. the behavior of the pfn pins is preconfigured to support one of the multiple types of wearable application cases. table 1 describes the behavior of the pfn1 and pfn2 pins based on the pwrrstcfg[3:0] bits, while figure 1 a thru figure 1 d shows basic flow diagrams associated with each mode. a soft reset sends a 10ms pulse on rst and will either leave register settings unchanged or reset them to their default values depending on the device version (see table 192 for device settings). a hard reset on any device initiates a complete power-on reset sequence. the device enters off mode on cold boot (initial battery attach, v chgin = 0v) in response to a power-off i 2 c command, a valid pfn signal based on the pwrrstcfg[3:0] setting, or in the case of a uvlo condition on sys. when the device is in off mode, the bat-sys connection is opened and all functions are disabled except for the power function controller and ldo2 (if configured as always-on). the MAX20303 will exit off mode and turn the main power back on when there is a qualified pfn1 signal (pwrrstcfg[3:0] = 0000, 0001, 0110, 0111, 1000) or when a valid voltage is applied to chgin. in the powered-on state, the sys node is enabled and other functions can be controlled through the i 2 c registers. when the power- on event occurs, the bat-to-cell switch is immediately closed and, 30ms later, the power path to sys is enabled. this delay allows the fuel gauge to take an open cell measurement before the battery is loaded. note that there is a relearning period to determine the state of the battery whenever the fuel gauge is disconnected. if the typical use case frequently switches the fuel gauge off and on, the user may consider permanently connecting cell-to- bat to avoid the relearning period. figure 2 illustrates a complete boot sequence coming out of the off state. maxim integrated 44 MAX20303 wearable power management solution www.maximintegrated.com
figure 1a. pwrrstcfg = 0000 or 0001 from power-on shutdown hold rst low turn off resources through pfn1 (10ms debounce) wait resources turn-off time 20ms passive discharge outputs 10ms off global passive discharge otp through pfn1 (10ms debounce) or chgin attach soft reset hold rst low through pfn2 (10ms debounce) pfn2 released +10ms delay boot sequence pwrrstcfg = 0000, 0001 maxim integrated 45 MAX20303 wearable power management solution www.maximintegrated.com
figure 1b. pwrrstcfg = 0010 or 0011 on shutdown hold rst low turn off resources wait resources turn off time 20ms passive discharge outputs 10ms off global passive discharge otp chgin attach through pfn2 rise/fall (10ms debounce) boot sequence pwrrstcfg = 0010, 0011 through pfn1 rise/fall (10ms debounce) hold rst low turn off resources wait resources turn off time 20ms active discharge outputs 50ms c software reset hard reset 200ms delay 10ms delay soft reset 200ms delay hold rst low through i 2 c pwr_off_cmd or i2c_pwr_off_dely (30ms delay) boot sequence maxim integrated 46 MAX20303 wearable power management solution www.maximintegrated.com
figure 1c. pwrrstcfg = 0100 or 0101 pwrrstcfg = 0100 , 0101 on hold rst low , turn resources off active discharge outputs c software reset boot sequence shutdown : hold rst low , turn off resources and enable active discharge wait resource turn - off time ( 20 ms ) off global passive discharge ( otp ) disable active discharge seal handler hard reset process initiated soft reset process initiated hold rst low 10 ms delay 15 s delay abort hard reset abort soft reset 15 s delay pfn 2 low ( 10 ms debounce ) pfn 1 low ( 10 ms debounce ) pfn 1 high ( 10 ms debounce ) and chgin rise / fall ( 100 ms debounce ) pfn 2 high ( 10 ms debounce ) and chgin rise / fall ( 100 ms debounce ) i 2 c pwr _ off _ cmd or i 2 c _ pwr _ off _ dly ( 30 ms delay ) chgin 50 ms wait resource turn - off time ( 20 ms ) 15 s expire maxim integrated MAX20303 wearable power management solution www.maximintegrated.com
figure 1d. pwrrstcfg = 0110 on shutdown hold rst low turn off resources wait resources turn-off time 20ms passive discharge outputs 10ms off global passive discharge otp via pfn1 low (10ms debounce) or chgin attach boot sequence pwrrstcfg = 0110 through pfn1 low (10ms debounce) for 12sec hold rst low turn off resources shutdown trap pfn1 high (10ms debounce) through i 2 c pwr_off_cmd or i2c_pwr_off_dely (30ms delay) maxim integrated 48 MAX20303 wearable power management solution www.maximintegrated.com
figure 1e. pwrrstcfg = 0111 on shutdown hold rst low turn off resources wait resources turn-off time 20ms passive discharge outputs 10ms off global passive discharge otp through pfn 1 low 3s or chgin attach (28ms debounce) boot sequence pwrrstcfg = 0111 through pfn1 low (10ms debounce) for 10sec soft reset hold rst low pfn1/2 release (10ms debounce) + 10ms delay through i 2 c pwr_off_cmd or i2c_pwr_off_dely (30ms delay) i MAX20303 wearable power management solution www.maximintegrated.com
figure 1f. pwrrstcfg = 1000 on shutdown hold rst low turn off resources wait resources turn-off time 20ms passive discharge outputs 10ms off global passive discharge if enabled through pfn1 low for 3s or chgin attach (28ms debounce) boot sequence pwrrstcfg = 1000 through pfn2 low for 12sec soft reset hold rst low pfn2 release (10ms debounce) + 10ms delay through i 2 c pwr_off_cmd or i2c_pwr_off_dely (30ms delay) maxim integrated 50 MAX20303 wearable power management solution www.maximintegrated.com
table 1. pwrrstcfg settings pwrrstcfg pfn1 pfn1 pu/pd pfn2 pfn2 pu/pd notes 0000 enable pulldown soft-reset active-low pullup on/of mode with 10ms debounce. active- high on/of control on pfn1. logic-low on pfn2 generates 10ms pulse on rst . note: in this mode, if pfn1 is high, pwr_ off_cmd will cause the part to turn of, then immediately return to the on state. 0001 disable pullup soft-reset active-low pullup on/of mode with 10ms debounce. active-low on/of control on pfn1. logic-low on pfn2 generates 10ms pulse on rst . note: in this mode, if pfn1 is high, pwr_ off_cmd will cause the part to turn of, then immediately return to the on state. 0010 hard-reset active-high pulldown soft-reset active-high pulldown always-on mode (i.e., device can only be put in of state through pwr_off_cmd). 10ms hard reset of time. 10ms soft reset pulse time. 200ms delay prior to both reset behaviors. 0011 hard-reset active-low pullup soft-reset active-low pullup always-on mode (i.e., device can only be put in of state through pwr_off_cmd). 50ms hard-reset of time. 10ms soft-reset pulse time. 200ms delay prior to both reset behaviors. 0100 hard-reset active-high triggered on chgin insertion pulldown soft-reset active-high triggered on chgin insertion pulldown always-on mode (i.e., device can only be put in of state through pwr_off_cmd). 50ms hard-reset of time. 10ms soft-reset pulse time. 15s delay prior to both reset behaviors. either reset may be aborted 0101 hard-reset active-low triggered by chgin insertion pullup soft-reset active-low triggered on chgin insertion pullup always-on mode (i.e., device can only be put in of state through pwr_off_cmd). 70ms hard-reset of time. 10ms soft-reset pulse time. 15s delay prior to both reset behaviors. either reset may be aborted. 0110 kin pullup kout none on/of mode through specifc long-press button timing or pwr_off_cmd. 0111 kin pullup kout none of mode through pwr_off_cmd. on mode through specifc long-press (3s) or chgin insertion soft reset through specifc long press (10s). 1000 kin pullup soft-reset active-low 12s long press pullup custom two button. of mode through pwr_ off_cmd. on mode through kin long-press (3s) or chgin insertion. soft reset through pfn2 long press (12s). 1001-1111 rfu maxim integrated 51 MAX20303 wearable power management solution www.maximintegrated.com
figure 2. the full MAX20303 boot sequence from power on v bus present ? fuel gauge : on wait for 30 ms charger : off limiter : on wait for 10 ms sys _ uvlo = 0 ? limiter : off tshdntmo = 0 ? error mode ( outputs as off mode ) power path : off charger enable : off enter in power off latched , requires external event to restart wait tshdntmo charger : off power path : on batoc on batoc irq ena sys _ uvlo = 0 ? chg _ ena = chgen seq based startup sequence sys _ uvlo = 0 ? rst sys _ uvlo irq ena on no yes yes yes no no no v bus removal yes yes no v bus insertion or pfn press if vbus not present before tshdntmo sys _ uvlo irq batoc irq maxim integrated 52 MAX20303 wearable power management solution www.maximintegrated.com
power sequencing the sequencing of the switching regulators, ldos, and charge pump during power-on is configurable. see each regulators sequencing bits for details. regulators can turn on at one of three points during the power-on process: 75ms after the power-on event, at the time the rst signal is released, or at two points in between. the two points between sys and rst are fixed proportionally to the duration of the power-on reset (por) process (t rst ). the timing relationship is presented graphically in figure 3 . alternatively, the regulators can remain off by default and turn on with an i 2 c command after rst is released. ldo2 can be configured to be always-on as long as sys or bat is present. the sys voltage is monitored during the power-on sequence. if v sys falls below v sys_uvlo_f during the sequencing process with a valid voltage at chgin, the process repeats from the point where sys was enabled to allow more time for the voltage to stabilize. if there is not a valid voltage at chgin, the device returns to the off state to avoid draining the battery. power is also turned off if bat experiences a current greater than i bat_oc_r for more than t bat_oc_d . figure 3. reset sequence programming maxim integrated 53 MAX20303 wearable power management solution www.maximintegrated.com
current sink in addition to several voltage regulators, the MAX20303 also includes three low-dropout linear current regulators from led_ to gnd. the sink current of each current regulator is independently programmable through its respective led_iset[4:0] bits in direct registers led_ direct (0x2dC0x2f). the current regulators can be programmed to sink 0.6ma to 30ma with configurable step sizes and are ideal for sinking current from external leds. the ledistep[1:0] bits in direct register ledstepdirect (0x2c) control the size of the current steps for all current sinks. this step size also sets an effective limit on the sinking current as the number of steps remains constant while the step size varies. current sinks are enabled through an i 2 c command, by an internal charger status signal, or by an external mpc pin allowing for led status indicators. note that the current sinks always draw quiescent current when tied to an mpc_ control or status signal regardless of the mpc_ or status state. system load switch an internal 80m? (typ) mosfet connects bat to sys when no voltage source is available on chgin. when an external source is detected at chgin, this switch opens and sys is powered from the input source through the input current limiter. the sys-to-bat switch also prevents v sys from falling below v bat when the system load exceeds the input current limit. if v sys drops to v bat due to the current limit, the bat-sys switch turns on so the load is supported by the battery. if the system load continuously exceeds the input current limit, the battery is not charged. this is useful for handling loads that are nominally below the input current limit but have high current peaks exceeding the input current limit. during these peaks, battery energy is used, but at all other times the battery charges. smart power selector the smart power selector seamlessly distributes power from the external chgin input to the bat and sys nodes. with both an external adapter and battery connected, the smart power selector basic functions are: when the system load requirements are less than the input current limit, the battery is charged with residual power from the input. when the system load requirements exceed the input current limit, the battery supplies supplemental current to the load. when the battery is connected and there is no external power input, the system is powered from the battery. input limiter the input limiter distributes power from the external adapter to the system load and battery charger. in addition to the input limiters primary function of passing power to the system load and charger, it performs several additional functions to optimize use of available power. invalid chgin voltage protection: if chgin is above the overvoltage threshold, the device enters overvoltage lockout (ovl). ovl protects the MAX20303 and down - stream circuitry from high-voltage stress up to +28v and down to -5.5v. during positive ovl, the internal circuit remains powered and an interrupt is sent to the host. the negative voltage protection disconnects chgin and the device is powered only by bat. the charger turns off and the system load switch closes, allowing the battery to power sys. chgin is also invalid if it is less than v bat , or less than the usb undervoltage threshold. with an invalid input voltage, the bat-sys load switch closes and allows the battery to power sys. chgin input current limit: the chgin input current is limited to prevent input overload. the input current limit is controlled by i 2 c. to accommodate systems with a high in-rush current, the limiter includes a program - mable blanking time during which the input current limit increases to i lim_max . thermal limiting: in case the die temperature exceeds the normal limit (t chg_lim ), the MAX20303 attempts to limit temperature increase by reducing the input current from chgin. in this condition, the system load has priority over the charger current, so the input current is first reduced by lowering the charge current. if the junction temperature continues to rise and reaches the maximum operating limit (t chgin_shdn ), no input current is drawn from chgin and the battery powers the entire system load. adaptive battery charging: while the system is powered from chgin, the charger draws power from sys to charge the battery. if the total load exceeds the input current limit, an adaptive charger control loop reduces charge current to prevent v sys from collapsing. when the charge current is reduced below 50% due to i lim or t chg_lim limits, the timer clock operates at half speed. when the charge current is reduced below 20% due to i lim or t chg_lim limits, the timer clock is paused. fast-charge current setting: the MAX20303 uses an external resistor connected from set to gnd to set the fast-charge current. the precharge and charge-termina - tion currents are programmed as a percentage of this value by opcode 0x14. the fast-charge current resistor can be calculated as: r set = k set x v set /i fchg maxim integrated 54 MAX20303 wearable power management solution www.maximintegrated.com
where k set has a typical value of 2000a/a and v set has a typical value of +1v. the range of acceptable resistors for r set is 4k? to 400k?. a capacitive load on set can cause instability of the charger if the condition (c set < 5s/r set ) pf is violated. sar adc/monitor mux in order to simplify system monitoring, the MAX20303 includes a voltage monitor multiplexer (mux). the i 2 c controlled mux connects the mon pin to the scaled value of one of six voltage regulators, bat, or sys. a resistive divider scales the voltage to one of four ratios determined by monratiocfg[1:0] (opcode 0x50, table 117 ). because the mux can only tolerate voltages up to +5.5v, v chgin , v cpout , and v bstout are not available to mon. an internal adc reads the remaining voltage rails and performs system tasks such as jeita temperature monitoring and sys tracking during haptic driver operations. manual adc measurements are initiated by writing the desired channel to adc_measure_launch (opcode 0x53, table 121 ) and reading the response from apdatain0-3. the adc can also measure the mon voltage when the mux is enabled with a 1:1 ratio. the full-scale range of the adc for different voltage rails is detailed in table 2 . jeita monitoring with charger control to enhance safety when charging li+ batteries, the MAX20303 includes jeita-compliant temperature monitoring. a resistive divider is formed on thm by attaching a pullup resistor to tpu and connecting the thermistor of a battery-pack (do not exceed 1ma load on tpu). the divider output is read by the internal adc when jeita monitoring is enabled and the result - ing temperature measurement places the battery into one of five temperature zones: cold, cool, room, warm, and hot. zone-specific temperature limits and charging behavior are fully configurable through the chargerthermallimits_config_ write (opcode 0x16, table 69 ) and chargerthermalreg_ config_write (opcode 0x18, table 73 ) commands detailed in table 69 and table 73 . some example profiles are included in figure 4 . it is important to note that, because battery temperature is measured by the internal adc, jeita moni - toring is unavailable when automatic level compensation is enabled in the haptic driver. haptic driver the MAX20303 features a versatile, integrated haptic driver. the driver allows for real time control of haptic devices through pwm or i 2 c as well as the ability to run haptic patterns from internal ram. for added flexibility, the driver is capable of driving both linear resonant actuator (lra) and eccentric rotating mass (erm) actuators. figure 4a. sample jeita pre charge profile figure 4b. sample jeita fast charge profile table 2. sar adc full-scale voltages and conversions voltage rail available range conversion (v) sys +2.6v to +5.5v (result[7:0] * 5.5)/255 mon 0v to +5.5v (result[7:0] * 5.5)/255 thm 0% to 100% v dig (result[7:0] * 100)/255 chgin +3v to +8v (result[7:0] * 8.25)/255 cpout +3v to +8v (result[7:0] * 8.25)/255 bstout +3v to +21v (result[7:0] * 21.0)/255 i coldfchg i coolfchg i warmfchg i hotfchg coldchgen coolchgen warmchgen hotchgen charging t 1 t 2 t 3 t 4 i roomfchg temperature (c) fast charge constant current: v bat_pchg < v bat < v bat_reg coldchgen = 0 coolchgen warmchgen hotchgen = 0 charging t 1 t 2 t 3 t 4 i pchg temperature ( c ) prequal : v bat < v bat _ pchg i pchg i pchg maxim integrated 55 MAX20303 wearable power management solution www.maximintegrated.com
figure 4c. sample jeita maintain charge profile figure 5. charger state diagram coldbatreg coolbatreg hotbatreg colden coolen warmen hoten charging t 1 t 2 t 3 t 4 batreg temperature (c) warmbatreg maintain: v bat batreg- batrechg timer fault chgstat = 111 led = 0.15s period i chg = 0 chgen = 1, v bat < v batreg C v batrechg and v sys > v fchg-mtchg rise v bat >v pchg_r reset charge timer v bat < v pchg_r reset charge timer voltage mode = 1* and v sys > v fchg-mtchg rise jeita enable charging jeita disable charging reset charge timer jeita enable charging jeita disable charging chgen=1, v bat > v batreg C v batrechg chgen = 1, v bat > v batreg C v batrechg i chg > i chg_done reset charge timer i chg < i chg_done and v sys > v fchg-mtchg rise and t die < t chg_lim reset charge timer voltage mode=0* and v sys > v fchg-mtchg rise or v bat < v pchg_r t chg_timer > t mtchg and chgautostp=1 v bat < v batreg C v batrechg and chgautoresta = 1 and v sys < v fchg-mtchg rise reset charge timer pause charge timer pause charge timer pause charge timer t chg_timer > t pchg t chg_timer > t fchg t die > t chgin_lim or v bat > v sys or chgen = 0 or input limiter off from any state notes: * voltage mode is an internal signal ** charge timer is slowed by 50% if i chg t3 t mtchg v bat < v batreg C v batrechg jeita disable charging jeita enable charging jeita enable charging jeita disable charging maxim integrated MAX20303 wearable power management solution www.maximintegrated.com
erm an erm is the simplest haptic actuator to drive. the driving signal is taken directly as the output of an integrated h-bridge, allowing for bidirectional operation of the actuator. to configure the MAX20303 to drive an erm, the hptsel bit must be set to 0 using the opcode 0xa0 or 0xad ( table 127 and table 153 ). lra unlike the on-off control of an erm, lras require a sinu - soidal driving signal. the MAX20303 realizes this with a class-d amplifier that converts the driver input to a sinu - soidal output. note that any changes made to the output amplitude take effect in the next period of the sinusoid. an lras vibration magnitude is maximized when the driving signal matches the lras resonant frequency. to ensure the haptic driver closely tracks this frequency, the MAX20303 includes an auto-resonance tracking feature. resonance tracking is enabled by setting the emfen bit to 1 with opcode 0xa0 or 0xad. the range of resonant frequencies that can be reliably driven is 120hz to 305hz. enabling resonance tracking is strongly recommended when driving an lra to ensure maximum driving efficiency and amplitude. to select lra mode, set the hptsel bit to 1 using opcode 0xa0 or 0xad. driver amplitude the haptic driver features a configurable voltage basis for the amplitude of the driving signal. setting this basis, referred to as the full-scale voltage (v fs ), configures the maximum amplitude of the driver output. it is set using hptvfs[7:0] with opcode 0xa2 or 0xb2 ( table 131 and table 163 ) and has a range of 0v to 5.5v (lsb = 21.57mv). since the h-bridge is supplied by v sys , the actual full-scale voltage of the driver at any given moment is the minimum of the value stored in hptvfs[7:0] and v sys . once v fs has been set, all driver amplitudes are scaled as a percentage of the full-scale voltage. the resolution of the amplitude is always v sys /128. therefore, the effective resolution of the amplitude scales with the v fs / v sys ratio. for example, if v fs = v sys /2, the effective resolution is 6 bits. automatic level compensation because v sys can vary over time, the driver must adjust its output duty cycle to maintain a constant reference to the full-scale voltage. an automatic level compensation (alc) function measures v sys and handles this adjustment. alc can be enabled by setting the alcmod bit to 1 using opcode 0xa0 or 0xad and uses the MAX20303s internal adc to monitor v sys . the alc function then scales the haptic drivers duty cycle as needed to maintain the programmed driver amplitude. if alc is not enabled, v sys is assumed to be v fs . haptic uvlo additionally, v sys is measured after the driver is enabled but prior to starting a vibration. at any moment, if v sys goes below the programmed uvlo value, which is set through hptsysuvlo[7:0] with opcode 0xa6 ( table 139 ), the vibration event is aborted and the haptic driver is locked. see the haptic driver lock section for details regarding restarting vibration if a haptic uvlo condition is reached. the time required to perform the v sys measurement, as well as other startup delays, results in an initial latency of the haptic driver. to avoid partial pattern skipping in real- time modes, vibration patterns should be provided at least t hd_start after enabling the desired real-time vibration mode (ppwm or rti 2 c). vibration timeout a vibration timeout parameter is programmable through i 2 c. if a vibration lasts longer than the programmed time - out period, the vibration is aborted. the timeout period is stored in hptdrvtmo[5:0] (lsb = 1s), which can be written using opcode 0xb7 ( table 173 ). writing code 000000 disables the timeout function. see the haptic driver lock section for details regarding restarting vibration if a timeout is reached. overcurrent/thermal protection the haptic driver also includes overcurrent and thermal shutdown protection. while the haptic driver is active, the MAX20303 monitors the current from drp and drn. if overcurrent protection is enabled (hptocprotdis = 0) and the drp or drn current exceeds i hd_oc_thr , the haptic driver issues a fault, aborts vibration, and enters the locked state. thermal protection allows the MAX20303 to immediately shut down the haptic driver should the die temperature exceed t hd_oc_thr . this feature is enabled by setting hptthmprotdis = 0. see the haptic driver lock section for details regarding restarting vibration if an overcurrent or overtemperature condition is reached. maxim integrated 57 MAX20303 wearable power management solution www.maximintegrated.com
haptic driver lock if the MAX20303 detects a fault in the haptic driver, vibrations in progress are aborted and the haptic driver is locked by the hptlock bit. the user must manually clear the hptlock bit using opcode 0xa8 ( table 143 ) in order to run a new vibration attempt. a fault occurs under any of the following conditions: v sys drops below the threshold programmed in hptsysuvlo[7:0] (systemerror 0x25), an overcurrent is detected on drn or drp (systemerror = 0x20, 0x21, 0x22, or 0x23), the die temperature exceeds the thermal protection threshold (systemerror = 0x24), or a vibration duration exceeds the timeout period stored in hptdrvtmo[5:0] (systemerror 0x04). writing any value other than 0x00 with opcode 0xa8 will set hptlock high and disable the driver output. interface modes there are a total of four interface modes for controlling the haptic driver. these include two real-time modes and two stored memory modes. the haptic driver mode is set through hptdrvmode[4:0] with the direct-access i 2 c register 0x31. selecting an operation mode also enables the driver. in addition, hptdrven must be set and kept to 1 before setting hptdrvmode[4:0] and for the whole dura - tion of vibration. once vibration finishes, hptdrvmode[4:0] must be set to 00000 before the haptic driver may be disabled via hptdrven = 0 for power savings. pure-pwm (ppwm) ppwm mode offers real-time control of the haptic driver. patterns are generated by applying a pwm signal to the mpc_ pin selected by hptdrvmode[4:0]. the duty cycle of the applied signal determines the amplitude of the driving signal, scaled by v fs . the driving direction is centered about a 50% duty cycle. a duty cycle of 0% to 47.5% produces a (100 to 0)%v fs amplitude in the negative direction and a duty cycle of 52.5% to 100% produces a (0 to 100)%v fs amplitude in the positive direction. the region between 47.5% and 52.5% duty cycle is a dead zone and inputs within this range correspond to a null output. a timeout feature prevents idle pwm inputs from causing unwanted vibrations of the haptic motor. if the input signal remains at 0% duty cycle or 100% duty cycle for more than 2.56ms, the output is null and vibration stops. as such, the mpc_ input must remain dynamic to produce a continuous output. real-time i 2 c (rti 2 c) similar to ppwm mode, rti 2 c mode offers real-time control of the haptic driver. the direct register hptrti2camp (0x32) determines the amplitude of the output signal. the lower seven bits of the register (hptrti2camp[6:0]) set the amplitude as a percentage of v fs and the msb (hptrti2csign) sets the direction of rotation. 100% amplitude, reverse drive, for example, is produced by setting hptrti2camp to 0x7f (0b01111111). once rti 2 c mode is enabled through hptdrvmode[4:0], the haptic driver continuously outputs the amplitude and direction defined by the latest data in hptrti2camp. in order to generate haptic patterns, the hptrti2camp register must receive new data. external triggered stored pattern (etrg) in etrg mode, a rising edge on an mpc_ pin or a 0-to-1 transition of the hptexttrig bit in direct i 2 c register 0x31 initiates a vibration sequence. the sequence is contained in six registers and comprises an overdrive (startup) amplitude, active drive amplitude, braking amplitude, and the duration of each driving behavior. amplitudes contained in etrgodamp[7:0], etrgactamp[7:0], and etrgbrkamp[7:0], which are set through opcode 0xa2C0xa4 or 0xb3 ( table 131 thru table 136 and table 165 ), follow the same format as hptrti2csign + hptrti2camp[6:0] in direct i 2 c register 0x32 (i.e., the lower-seven bits store the amplitude as a percentage of v fs and the msb determines the direction). the trigger input is selected when the driver enters etrg mode via hptdrvmode[4:0] in direct i 2 c register 0x31. in order to properly register the rising edge, the trigger signal must remain high for a few clock cycles of the driver. once the sequence begins, the haptic driver follows the duration values stored in etrgoddur[7:0], etrgactdur[7:0], and etrgbrkdur[7:0]. it is possible, however, to extend the active drive time by leaving the trigger high longer than the time specified in etrgactdur[7:0]. doing so will cause the driver to output the amplitude stored in etrgactamp[7:0] until a falling edge is detected. once the trigger signal falls low, the brake sequence executes. ram stored haptic pattern (ramhp) the final method of controlling the haptic driver is ramhp mode. the MAX20303 contains an internal 256 x 24 bit ram in which haptic patterns are stored. by storing haptic sequences in ram at startup, the driver can perform sophisticated haptic sequences upon receipt of a trigger signal as in etrg mode. the direct i 2 c register hptpatramaddr (0x33) specifies the ram address where the sequence begins. maxim integrated 58 MAX20303 wearable power management solution www.maximintegrated.com
ram should be loaded when the MAX20303 comes out of off mode. to write data to the ram, the hptramen bit in direct register hptdirect1 (0x31) must first be set high. next, writing a value to the direct register hptramaddr (0x28) specifies the ram address in which data written to hptdatah, hptdatam, and hptdatal (0x29, 0x2a, and 0x2b, respectively) is stored. it is possible to read back data from ram. writing an address to hptramaddr, then initiating an i 2 c read transaction of register 0x29, will allow readback of the three bytes stored in the ram address. ram read and write procedures are depicted graphically in figure 6 . a haptic pattern is composed of multiple pattern samples. pattern samples define the amplitude, duration, wait time, transition, and repetition of a segment of a haptic pattern. these samples are defined in three bytes and written to ram through hptdatah, hptdatam, and hptdatal. hptdatah contains the sign of the samples amplitude (axsign), the upper-five bits of the amplitude (ax[6:2]), and instructions to the haptic driver on handling the pattern sample (nlsx). hptdatam contains the lower two bits of the samples amplitude (ax[1:0]), the duration of the sample (dx), and the upper bit of the wait time before the next sample in the pattern (wx[4]). hptdatal contains the lower four bits of the wait time (wx[3:0]) and the repetition behavior (rptx). table 3 describes the definition of a pattern sample and figure 7 provides a sample haptic pattern with corresponding waveform. figure 6. read and write processes for ram s from master to slave from slave to master a slave address-w p writing ram data bytes at ram address[7:0] hptramaddr (0x28) a ram address[7:0] a ramdatah[7:0] a ramdatam[7:0] a ramdatal[7:0] a s a slave address-w p reading ram data bytes from ram address[7:0] hptdatah (0x29) a slave address-r a s a slave address-w hptramaddr (0x28) a ram address[7:0] a sr ramdatah[7:0] a ramdatam[7:0] a ramdatal[7:0] na s start condition sr repeated start p stop condtion acknowledge a na not acknowledge maxim integrated 59 MAX20303 wearable power management solution www.maximintegrated.com
table 3. ramhp pattern storage format address 0x28-0x2b bit b7 b6 b5 b4 b3 b2 b1 b0 hptramaddr hptramaddr[7:0] hptdatah nlsx[1:0] ampsign amp[6:2] hptdatam amp[1:0] dur[4:0] wait[4] hptdatal wait[3:0] rptx[3:0] hptramaddr [7:0] the ram address in which the pattern sample is stored nlsx[1:0] sets the behavior of a sample in the pattern. 00 = current sample is the last sample in the pattern 01 = current sample is not the last sample in the pattern 10 = interpolate current sample with next sample 11 = current sample is the last sample in the pattern. repeat the entire pattern rptx[3:0] times ampsign[1:0] sign of haptic amplitude in current sample 0 = positive 1 = negative amp[6:2] sets the amplitude of pattern sample x as a 7-bit percentage of v fs and a 1-bit direction. see hptvfs[7:0] in table 131. dur[4:0] sets the duration of time the driver outputs the amplitude of the current sample in increments of 5ms 00000 = 0ms 00001 = 5ms ... 11110 = 150ms 11111 = 155ms wait[4:0] sets the duration of time the driver waits at zero amplitude before the next sample in increments of 5ms 00000 = 0ms 00001 = 5ms ... 11110 = 150ms 11111 = 155ms rptx[3:0] sets the number of times to repeat the sample before moving to the next sample in the pattern. if nlsx[1:0] = 11, this sets the number of times to repeat the whole pattern. 0000 = repeat 0 times 0001 = repeat 1 time 1110 = repeat 14 times 1111 = repeat 15 times maxim integrated 60 MAX20303 wearable power management solution www.maximintegrated.com
fuel gauge modelgauge theory of operation the MAX20303 fuel gauge is based on the max17048 stand-alone fuel gauge and simulates the internal, non - linear dynamics of a li+ battery to determine its state of charge (soc). the sophisticated battery model considers impedance and the slow rate of chemical reactions in the battery. modelgauge performs best with a custom model, obtained by characterizing the battery at multiple discharge currents and temperatures to precisely model it. at power-on reset (por), the ics have a preloaded rom model that performs well for some batteries. for more details on the fuel gauge, refer to the max17048 data sheet. fuel-gauge performance in coulomb counter-based fuel gauges, soc drifts because offset error in the current-sense adc measurement accumulates over time. instantaneous error can be very small, but never precisely zero. error accumulates over time in such systems (typically, 0.5%C2% per day) and requires periodic corrections. some algorithms correct drift using occasional events and, until such an event occurs, the algorithms error is boundless: reaching predefned soc levels near full or empty measuring the relaxed battery voltage after a long period of inactivity completing a full charge/discharge cycle modelgauge requires no correction events because it uses only voltage, which is stable over time. the modelgauge remains accurate despite the absence of any of the above events; it neither drifts nor accumulates error over time. to correctly measure performance of a fuel gauge as experienced by end-users, exercise the battery dynamically. accuracy cannot be fully determined from only simple cycles. figure 7a. sample pattern stored in ram figure 7b. haptic driver output of stored pattern nls0[1:0] amp[7:0] dur[4:0] wait[4:0] rpt[3:0] nls prev amp prev dur prev wait prev rpt prev 01 a0 00010 00001 0001 01 a1 00011 00000 0010 10 a2 00011 00000 x 10 a3 00011 00000 x 11 a4 dc 00010 0010 end of previous pattern wait 10 ms 30 ms 30 ms 30 ms 30 ms 30 ms 30 ms 30 ms 30 ms wait 20 ms wait 20 ms wait 10 ms 20 ms 20 ms sample 0 sample 1 sample 2 sample 3 sample 4 repeat pattern a 0 a 1 a 2 a 3 a 4 maxim integrated 61 MAX20303 wearable power management solution www.maximintegrated.com
battery voltage and state of charge open-circuit voltage (ocv) of a li+ battery uniquely determines its soc; one soc can have only one value of ocv. in contrast, a given v cell can occur at many differ - ent values of ocv because v cell is a function of time, ocv, load, temperature, age, impedance, etc.; one value of ocv can have many values of v cell . therefore, one soc can have many values of v cell , so v cell cannot uniquely determine soc. even the use of sophisticated tables to consider both voltage and load results in significant error due to the load transients typically experienced in a system. during charging or discharging, and for approximately 30 min after, v cell and ocv differ substantially, and v cell has been affected by the preceding hours of battery activity. modelgauge uses voltage comprehensively. temperature compensation for best performance, the host microcontroller must measure battery temperature periodically, and compensate the rcomp modelgauge parameter accordingly, at least once per minute. each custom model defines constants rcomp0 (0x97, default), tempcoup (-0.5, default), and tempcodown (-5.0, default). to calculate the new value of config.rcomp: // t is battery temperature (degrees celsius) if (t > 20) { rcomp = rcomp0 + (t - 20) x tempcoup; } else { rcomp = rcomp0 + (t - 20) x tempcodown; } impact of empty-voltage selection most applications have a minimum operating voltage below which the system immediately powers off (empty voltage). when characterizing the battery to create a custom model, choose empty voltage carefully. capacity unavailable to the system increases at an accelerating rate as empty voltage increases. to ensure a controlled shutdown, consider including operating margin into the fuel gauge based on some low threshold of soc, for example shutting down at 3% or 5%. this utilizes the battery more effectively than adding error margin to empty voltage. battery insertion when the battery is first inserted into the system, the fuel-gauge ic has no previous knowledge about the batterys soc. assuming that the battery is relaxed, the ic translates its first v cell measurement into the best initial estimate of soc. initial error caused by the battery not being in a relaxed state diminishes over time, regardless of loading following this initial conversion. while soc estimated by a coulomb counter diverges, modelgauge soc converges, correcting error automatically. initial error has no long-lasting impact. battery insertion debounce any time the ic powers on or resets (see the vreset/ id register (0x18) section), it estimates that ocv is the maximum of 16 v cell samples (1ms each, full 12-bit resolution). ocv is ready 17ms after battery insertion, and soc is ready 175ms after that. battery swap detection if v cell falls below v rst , the ic quick-starts once v cell returns above v rst . this handles battery swap; the soc of the previous battery does not affect that of the new one. see the quick-start and vreset/id register (0x18) sections. quick-start if the ic generates an erroneous initial soc, the battery insertion and system power-up voltage waveforms must be examined to determine if a quick-start is necessary, as well as the best time to execute the command. the ic samples the maximum vcell during the first 17ms. see the battery insertion debounce section. unless v cell is fully relaxed, even the best sampled voltage can appear greater or less than ocv. therefore, quick-start must be used cautiously. most systems should not use quick-start because the ics handle most startup problems transparently, such as intermittent battery-terminal connection during insertion. if battery voltage stabilizes faster than 17ms, do not use quick-start. the quick-start command restarts fuel-gauge calculations in the same manner as initial power-up of the ic. if the system power-up sequence is so noisy that the initial estimate of soc has unacceptable error, the system microcontroller may be able to reduce the error by using quick-start. a quick-start is initiated by a rising edge on the qstrt pin, or by writing 1 to the quick-start bit in the mode register. power-on reset (por) por includes a quick-start, so only use it when the battery is fully relaxed. see the quick-start section. this command restores all registers to their default values. after this command, reload the custom model. see the cmd register (0xfe) section. maxim integrated 62 MAX20303 wearable power management solution www.maximintegrated.com
hibernate mode the ics have a low-power hibernate mode that can accu - rately fuel gauge the battery when the charge/discharge rate is low. by default, the device automatically enters and exits hibernate mode according to the charge/dis - charge rate, which minimizes quiescent current (below 5a) without compromising fuel-gauge accuracy. the ics can be forced into hibernate or active modes. force the ic into hibernate mode to reduce power consumption in applications with less than c/4-rate maximum loading. for applications with higher loading, maxim recommends the default configuration of automatic control of hibernate mode. in hibernate mode, the device reduces its adc conversion period and soc update to once per 45s. see the hibrt register (0x0a) section for details on how the ic automatically enters and exits hibernate mode. alert interrupt the ics can interrupt a system microcontroller with five configurable alerts. all alerts can be disabled or enabled with software. when the interrupt occurs, the system microcontroller can determine the cause from the status register. when an alert is triggered, the ic drives the alrt pin logic-low and sets config.alrt = 1. the alrt pin remains logic-low until the system software writes config.alrt = 0 to clear the alert. the alert function is enabled by default, so any alert can occur immediately upon power-up. entering sleep mode clears no alerts. sleep mode in sleep mode, the ic halts all operations, reducing current consumption to below 1a. after exiting sleep mode, the ic continues normal operation. in sleep mode, the ic does not detect self-discharge. if the battery changes state while the ic sleeps, the ic cannot detect it, causing soc error. wake up the ic before charging or discharging. to enter sleep mode, write mode.ensleep = 1 and either: hold sda and scl logic-low for a period for t sleep . a rising edge on sda or scl wakes up the ic. write config.sleep = 1. to wake up the ic, write config.sleep = 0. other communication does not wake up the ic. por does wake up the ic. therefore, applications that can tolerate 4a should use hibernate mode rather than sleep mode. i 2 c interface the MAX20303 uses the two-wire i 2 c interface to communicate with a host microcontroller. the configura - tion settings and status information provided through this interface are detailed in the register descriptions. to simplify the use of existing code and drivers designed for interfacing with the modelgauge fuel gauge, the MAX20303 appears as two devices on an i 2 c bus. the main device controlling the regulators, charger, and other system functions has the seven-bit slave address 0b0101000 (0x50 for writes, 0x51 for reads). accessing the fuel gauge is done using the seven-bit slave address 0b0110110 (0x6c for writes, 0x6d for reads). applications information i 2 c interface the MAX20303 contains an i 2 c-compatible interface for data communication with a host controller (scl and sda). the interface supports a clock frequency of up to 400khz. scl and sda require pullup resistors that are connected to a positive supply. start, stop, and repeated start conditions when writing to the MAX20303 using i 2 c, the master sends a start condition (s) followed by the MAX20303 i 2 c address. after the address, the master sends the register address of the register that is to be programmed. the master then ends communication by issuing a stop condition (p) to relinquish control of the bus, or a repeated start condition (sr) to communicate to another i 2 c slave. see figure 8 . figure 8. i 2 c start, stop and repeated start conditions scl sda s sr p maxim integrated 63 MAX20303 wearable power management solution www.maximintegrated.com
slave address set the read/ write bit high to configure the MAX20303 to read mode. set the read/ write bit low to configure the MAX20303 to write mode. the address is the first byte of information sent to the MAX20303 after the start condition. bit transfer one data bit is transferred on the rising edge of each scl clock cycle. the data on sda must remain stable during the high period of the scl clock pulse. changes in sda while scl is high and stable are considered control sig - nals (see the start, stop, and repeated start conditions section). both sda and scl remain high when the bus is not active. single-byte write in this operation, the master sends an address and two data bytes to the slave device ( figure 9 ). the following procedure describes the single byte write operation: the master sends a start condition the master sends the 7-bit slave address plus a write bit (low) the addressed slave asserts an ack on the data line the master sends the 8-bit register address the slave asserts an ack on the data line only if the address is valid (nak if not) the master sends 8 data bits the slave asserts an ack on the data line the master generates a stop condition burst write in this operation, the master sends an address and mul - tiple data bytes to the slave device ( figure 10 ). the slave device automatically increments the register address after each data byte is sent, unless the register being accessed is 0x00, in which case the register address remains the same. the following procedure describes the burst write operation: the master sends a start condition the master sends the 7-bit slave address plus a write bit (low) the addressed slave asserts an ack on the data line the master sends the 8-bit register address the slave asserts an ack on the data line only if the address is valid (nak if not) the master sends 8 data bits the slave asserts an ack on the data line repeat 6 and 7 n-1 times the master generates a stop condition figure 9. write byte sequence a device slave address - w s a register address p from master to slave from slave to master a 8 data bits write single byte maxim integrated 64 MAX20303 wearable power management solution www.maximintegrated.com
single byte read in this operation, the master sends an address plus two data bytes and receives one data byte from the slave device ( figure 11 ). the following procedure describes the single byte read operation: the master sends a start condition the master sends the 7-bit slave address plus a write bit (low) the addressed slave asserts an ack on the data line the master sends the 8-bit register address the slave asserts an ack on the data line only if the address is valid (nak if not) the master sends a repeated start condition the master sends the 7-bit slave address plus a read bit (high) the addressed slave asserts an ack on the data line the slave sends 8 data bits the master asserts a nack on the data line the master generates a stop condition figure 10. burst write sequence figure 11. read byte sequence from master to slave from slave to master a device slave address-w s a register address p a 8 data bits - 2 a 8 data bits - 1 a 8 data bits - n burst write from master to slave from slave to master a device slave address - r na 8 data bits p a device slave address - w s a register address sr read single byte maxim integrated 65 MAX20303 wearable power management solution www.maximintegrated.com
burst read in this operation, the master sends an address plus two data bytes and receives multiple data bytes from the slave device ( figure 12 ). the following procedure describes the burst byte read operation: the master sends a start condition the master sends the 7-bit slave address plus a write bit (low) the addressed slave asserts an ack on the data line the master sends the 8-bit register address the slave asserts an ack on the data line only if the address is valid (nak if not) the master sends a repeated start condition the master sends the 7-bit slave address plus a read bit (high) the slave asserts an ack on the data line the slave sends 8 data bits the master asserts an ack on the data line repeat 9 and 10 n-2 times the slave sends the last 8 data bits the master asserts a nack on the data line the master generates a stop condition acknowledge bits data transfers are acknowledged with an acknowledge bit (ack) or a not-acknowledge bit (nack). both the master and the MAX20303 generate ack bits. to generate an ack, pull sda low before the rising edge of the ninth clock pulse and hold it low during the high period of the ninth clock pulse (see figure 13 ). to generate a nack, leave sda high before the rising edge of the ninth clock pulse and leave it high for the duration of the ninth clock pulse. monitoring for nack bits allows for detection of unsuccessful data transfers. figure 12. burst read sequence figure 13. acknowledge from master to slave from slave to master a device slave address-w s a register address p a 8 data bits - 3 a 8 data bits - 2 na 8 data bits - n a device slave address-r a 8 data bits - 1 sr burst read scl sda s 1 2 8 9 not acknowledge acknowledge maxim integrated 66 MAX20303 wearable power management solution www.maximintegrated.com
application processor interface several of the MAX20303s functions are controlled by an application processor (ap). ap commands read and write configuration settings to the internal registers. data transfer is handled by the ap controller and is triggered by writes to apcmdout. there is a 5ms (typ), 9ms (max) latency associated with setting commands. this delay increases if the command requires additional processes such as adc measurements, haptic autotune, etc. when the transfer is complete, int goes low, apcmdresponseint (bit seven of direct register int2 (0x05)) is set, and the controller writes the value of the received opcode to apresponse. reading the data in apresponse provides verification of the successful execution of an opcode. ap write to set configuration registers, data must first be written to the apdataout0-5 registers. tables 47 to 190 detail the functions of each apdataout_ register for a given opcode. once apdataout0-5 contain the configuration bytes, writing an opcode to apcmdout signals the controller to transfer data to the internal registers. note that a write opcode only transfers the number of bytes defined by the command. the controller ignores the contents of all extra apdataout_ registers. see figure 14 for the structure of an ap write procedure with an apresponse opcode check. ap read to read a configuration register, apcmdout is set to a read opcode. read opcodes signal the controller to transfer the internal register contents to the apdatain0-5 registers. when the transfer is complete, apdatain0-5 contain the stored configuration settings or operation results and can be read over i 2 c. because read opcodes expect no inputs, any data stored in apdataout0-5 is ignored. figure 15 illustrates the ap read processes. ap launch certain commands trigger additional functions in the MAX20303. these commands, such as adc_measure_ launch (opcode 0x53) and hpt_autotune (opcode 0xac), may require additional elaboration time for taking measurements and computing the result. when the process is complete, results may be read from apdatain0-5 as in normal ap read commands. write-protected commands and fields if the factory configured bit writeprotect is enabled, the ap commands inputcurrent_config_write (0x10), charger_config_write (0x14), and charger_controlwrite (0x1a) are not accessible. if the application processor issues a request to one of these commands, the device will respond with the syserror code ma_syserror_ apcmd_writeprotect. a settings are also write protected, but it is possible to write these settings using an additional field in the command that contains a password. figure 14. executing a write opcode and reading the MAX20303 response figure 15. executing a read opcode and reading the MAX20303 response start i 2 c write apdataout _ payload ap command elaboration time (5ms typ, 9ms max) apcmdout apresponse i 2 c stop ap write command i 2 c read start i 2 c write ap command elaboration time (5ms typ, 9ms max) apcmdout apresponse i 2 c stop ap read command apdatain payload i 2 c stop maxim integrated 67 MAX20303 wearable power management solution www.maximintegrated.com
direct access i 2 c register map register address register name r/w b7 b6 b5 b4 b3 b2 b1 b0 0x00 hardwareid r hardwareid[7:0] 0x01 firmwareid r firmwareid[7:0] 0x03 int0 cor thmstatint chgstatint ilimint usbovpint usbokint chgthmsdint thmregint chgtmoint 0x04 int1 cor thmsdint bstfltint thmbuck2int thmbuck1int uvloldo2int uvloldo1int thmldo2int thmldo1int 0x05 int2 cor apcmdrespint syserrint lralockint lraactint bbstthmint sysbatlimint chgsyslimint 0x06 status0 r thmstat[2:0] chgstat[2:0] 0x07 status1 r ilim usbovp usbok chgjeitasd chgjeitareg chgtmo 0x08 status2 r thmsd bstflt thmbuck2 thmbuck1 uvloldo2 uvloldo1 thmldo2 thmldo1 0x09 status3 r apcmdresp syserr lralock lraact bbstthm sysbatlim chgsyslim 0x0b systemerror r systemerror[7:0] 0x0c intmask0 r/w thmstatintm chgstatintm ilimintm usbovpintm usbokintm chgjeita sdintm chgjeita regintm chgtmointm 0x0d intmask1 r/w thmsdintm bstfltintm thmbuck2intm thmbuck1intm uvloldo2intm uvloldo1intm thmldo2intm thmldo1intm 0x0e intmask2 r/w apcmdrespintm syserrintm lralockintm lraactintm bbstthmintm sysbatlimintm chgsyslimintm 0x0f apdataout0 r/w apdataout0[7:0] 0x10 apdataout1 r/w apdataout1[7:0] 0x11 apdataout2 r/w apdataout2[7:0] 0x12 apdataout3 r/w apdataout3[7:0] 0x13 apdataout4 r/w apdataout4[7:0] 0x14 apdataout5 r/w apdataout5[7:0] 0x15 apdataout6 r/w apdataout6[7:0] 0x17 apcmdout r/w apcmdout[7:0] 0x18 apresponse r apresponse[7:0] 0x19 apdatain0 r apdatain0[7:0] 0x1a apdatain1 r apdatain1[7:0] 0x1b apdatain2 r apdatain2[7:0] 0x1c apdatain3 r apdatain3[7:0] 0x1d apdatain4 r apdatain4[7:0] 0x1e apdatain5 r apdatain5[7:0] 0x20 ldodirect r/w ldo2diren ldo1diren 0x21 mpcdirectwrite r/w mpc4write mpc3write mpc2write mpc1write mpc0write maxim integrated 68 MAX20303 wearable power management solution www.maximintegrated.com
direct access i 2 c register map (continued) register address register name r/w b7 b6 b5 b4 b3 b2 b1 b0 0x22 mpcdirectread r mpc4read mpc3read mpc2read mpc1read mpc0read 0x28 hptramaddr r/w hptramadd[7:0] 0x29 hptramdatah r/w nlsx[1:0] ampsign amp[6:2] 0x2a hptramdatam r/w amp[1:0] dur[4:0] wait[4] 0x2b hptramdatal r/w wait[3:0] rpt[3:0] 0x2c ledstepdirect r/w led2open led1open led0open ledistep[1:0] 0x2d led0direct r/w led0en[2:0] led0iset[4:0] 0x2e led1direct r/w led1en[2:0] led1iset[4:0] 0x2f led2direct r/w led2en[2:0] led2iset[4:0] 0x30 hptdirect0 r/w hptofimp hptthmprotdis hptocprotdis 0x31 hptdirect1 r/w hptexttrig hptramen hptdrven hptdrvmode[4:0] 0x32 hptrti2camp r/w hptrti2csign hptrti2camp [6:0] 0x33 hptpatramaddr r/w hptpatramaddr[7:0] maxim integrated 69 MAX20303 wearable power management solution www.maximintegrated.com
table 4. hardwareid register (0x00) table 5. firmwareid register (0x01) table 6. int0 register (0x03) table 7. int1 register (0x04) interrupt registers direct access i 2 c register descriptions address: 0x00 mode: read only bit 7 6 5 4 3 2 1 0 name hardwareid[7:0] hardwareid [7:0] hardwareid[7:0] bits show information about the hardware revision of the MAX20303 address: 0x01 mode: read only bit 7 6 5 4 3 2 1 0 name firmwareid[7:0] firmwareid [7:0] firmwareid[7:0] bits show information about the frmware revision of the MAX20303 address: 0x03 mode: clear on read bit 7 6 5 4 3 2 1 0 name thmstatint chgstatint ilimint usbovpint usbokint chgthms dint thmregint chgtmoint thmstatint change in thmstat caused interrupt. chgstatint change in chgstat caused interrupt, or frst detection complete after por. ilimint input current limit caused interrupt. usbovpint change in usbovp caused interrupt. usbokint change in usbok caused interrupt. note: registers written using opcodes 0x10, 0x14, 0x16, 0x18, 0x1a, and 0x1c are reset on charger insertion. after receiving a usbok interrupt, wait 10ms before writing any data using these opcodes. failure to wait 10ms may result in the data being overwritten to the default. chgthmsdint change in chgthmsd caused interrupt. thmregint change in chgthmreg caused interrupt. chgtmoint change in chgtmoint caused interrupt. address: 0x04 mode: clear on read bit 7 6 5 4 3 2 1 0 name thmsdint bstfltint thmbuck 2int thmbuck 1int uvloldo 2int uvloldo 1int thmldo 2int thmldo 1int thmsdint change in thmsd caused interrupt. bstfltint change in bstflt caused interrupt. thmbuck2int change in thmbuck2 caused interrupt thmbuck1int change in thmbuck1 caused interrupt. uvloldo2int change in uvloldo2 caused interrupt. uvloldo1int change in uvloldo1 caused interrupt. thmldo2int change in thmldo2 caused interrupt. thmldo1int change in thmldo1 caused interrupt. maxim integrated 70 MAX20303 wearable power management solution www.maximintegrated.com
table 8. int2 register (0x05) table 9. status0 register (0x06) status registers address: 0x05 mode: clear on read bit 7 6 5 4 3 2 1 0 name apcmdres pint syserrint lralockint lraactint bbstthmint sysbatlimint chgsysli mint apcmdrespint ap command response interrupt 0 = no new data available in apdatain registers. 1 = new data available in apdatain registers. syserrint system error interrupt 0 = no new error 1 = new asynchronous system error lralockint lra lock interrupt change in lralock caused interrupt. lraactint change in lraact caused interrupt. bbstthmint change in bbstthm caused interrupt. sysbatlimint change in sysbatlim caused interrupt. chgsyslimint change in chgsyslim caused interrupt. address: 0x06 mode: read only bit 7 6 5 4 3 2 1 0 name thmstat[2:0] chgstat[2:0] thmstat[2:0] status of thermistor monitoring 000 = t < t1 001 = t1 < t < t2 010 = t2 < t < t3 011 = t3 < t < t4 100 = t > t4 101 = no thermistor detected/thm high due to external pull-up 110 = ntc input disabled via thmen 111 = automatic monitoring disabled because chgin is not present. thm can still be measured by adc_ measure_launch chgstat[2:0] status of charger mode 000 = charger of 001 = charging suspended due to temperature (see battery charger state diagram) 010 = pre-charge in progress 011 = fast-charge constant current mode in progress 100 = fast-charge constant voltage mode in progress 101 = maintain charge in progress 110 = maintain charger timer done 111 = charger fault condition (see battery charger state diagram) maxim integrated 71 MAX20303 wearable power management solution www.maximintegrated.com
table 10. status1 register (0x07) address: 0x07 mode: read only bit 7 6 5 4 3 2 1 0 name ilim usbovp usbok chgjeita sd chgjeita reg chgtmo ilim chgin input current limit 0 = chgin input current below limit 1 = chgin input current limit active usbovp status of chgin ovp 0 = chgin overvoltage not detected 1 = chgin overvoltage detected usbok status of chgin input 0 = chgin input not present or outside of valid range 1 = chgin input present and valid chgjeitasd status of thermal shutdown 0 = charger in normal operating mode 1 = charger is in thermal shutdown chgjeitareg status of thermal regulation 0 = charger is functioning normally, or disabled 1 = charger is running in thermal regulation mode and charging current is being actively reduced according to jeita settings chgtmo status of time-out condition 0 = charger is running normally, or disabled 1 = charger has reached a time-out condition maxim integrated 72 MAX20303 wearable power management solution www.maximintegrated.com
table 11. status2 register (0x08) table 12. status3 register (0x09) address: 0x08 mode: read only bit 7 6 5 4 3 2 1 0 name thmsd bstflt thmbuck2 thmbuck1 uvlold o2 uvloldo1 thmldo2 thmldo1 thmsd 0 = device operating normally 1 = device in thermal shutdown bstflt 0 = hv boost operating normally 1 = hv boost in fault mode due to overcurrent or thermal shutdown thmbuck2 0 = buck2 operating normally 1 = buck2 in thermal shutdown thmbuck1 0 = buck1 operating normally 1 = buck1 in thermal shutdown uvloldo2 0 = ldo2 operating normally 1 = ldo2 uvlo active uvloldo1 0 = ldo1 operating normally 1 = ldo1 uvlo active thmldo2 0 = ldo2 operating normally 1 = ldo2 in thermal shutdown thmldo1 0 = ldo1 operating normally 1 = ldo1 in thermal shutdown address: 0x09 mode: read only bit 7 6 5 4 3 2 1 0 name apcmdresp syserr lralock lraaact bbstthm sysbatlim chgsyslim apcmdresp ap command response ready 0 = apresponse register is empty 1 = apresponse register contains an opcode syserr system error detect 0 = no system error 1 = system error detected. see systemerror (register 0x0b) lralock 0 = haptic driver is not active or has not yet locked onto lra resonant frequency 1 = haptic driver has locked onto lra resonant frequency lraact 0 = lra driver not active 1 = lra driver active bbstthm 0 = buck-boost converter operating normally 1 = buck-boost converter in thermal shutdown sysbatlim 0 = charge current is not being actively reduced to regulate sys 1 = charge current actively being reduced to regulate sys collapse chgsyslim 0 = input current limit normal 1 = input current limit being reduced to regulate chgin collapse maxim integrated 73 MAX20303 wearable power management solution www.maximintegrated.com
table 13. systemerror register (0x0b) address: 0x0b mode: read only bit 7 6 5 4 3 2 1 0 name systemerror[7:0] systemerror[7:0] last system error code: 0x00 - ma_syserror_none: no system error 0x01 - ma_syserror_boot: 0x02 - ma_syserror_boot_wdt: restart due to a watchdog event 0x03 - ma_syserror_boot_swrstreq: restart after hard-reset procedure 0x04 - ma_syserror_hpt_timeout: haptic driver disabled after timeout set through hptdrvtmo[5:0] has expired 0x10 - ma_syserror_apcmd_inprogress: attempt to use an ap command before previous command completed 0x11 - ma_syserror_apcmd_writeprotect: attempt to use a write protected command or invalid password 0x12 - ma_syserror_apcmd_unknown: attempt to use an undefned command 0x13 - ma_syserror_apcmd_fail: ap command failed to execute 0x20 - ma_syserror_hpt_drp_low: haptic driver disabled due to overcurrent condition on the drp low- side switch 0x21 - ma_syserror_hpt_drp_hig: haptic driver disabled due to overcurrent condition on the drp high- side switch 0x22 - ma_syserror_hpt_drn_low: haptic driver disabled due to overcurrent condition on the drn low- side switch 0x23 - ma_syserror_hpt_drn_hig: haptic driver disabled due to overcurrent condition on the drn high- side switch 0x24 - ma_syserror_hpt_thm_err: haptic driver disabled due to thermal shutdown 0x25 - ma_syserror_hpt_sys_thr_hit: haptic driver disabled due to sys falling below hptsysuvlo[7:0] threshold maxim integrated 74 MAX20303 wearable power management solution www.maximintegrated.com
table 14. intmask0 register (0x0c) interrupt mask registers address: 0x0c mode: read/write bit 7 6 5 4 3 2 1 0 name thmstat intm chgstat intm ilimintm usbovp intm usbok intm chgjeitasd intm thmjeita regintm chgtmo intm thmstatintm thmstatintm masks the thmstatint interrupt in the int0 register (0x03). 0 = masked 1 = not masked chgstatintm chgstatintm masks the chgstatint interrupt in the int0 register (0x03). 0 = masked 1 = not masked ilimintm ilimintm masks the ilimint interrupt in the int0 register (0x03). 0 = masked 1 = not masked usbovpintm usbovpintm masks the usbovpint interrupt in the int0 register (0x03). 0 = masked 1 = not masked usbokintm usbokintm masks the usbokint interrupt in the int0 register (0x03). 0 = masked 1 = not masked chgjeitasdintm chgthmsdintm masks the chgthmsdint interrupt in the int0 register (0x03). 0 = masked 1 = not masked chgjeitaregintm thmregintm masks the thmregint interrupt in the int0 register (0x03). 0 = masked 1 = not masked chgtmointm chgtmointm masks the chgtmoint interrupt in the int0 register (0x03). 0 = masked 1 = not masked maxim integrated 75 MAX20303 wearable power management solution www.maximintegrated.com
table 15. intmask1 register (0x0d) address: 0x0d mode: read/write bit 7 6 5 4 3 2 1 0 name thmsd intm bstfltintm thmbuck 2intm thmbuck 1intm uvloldo 2intm uvloldo 1intm thmldo 2intm thmldo 1intm thmsdintm thmsdintm masks the thmsdint interrupt in the int1 register (0x04). 0 = masked 1 = not masked bstfltintm bstfltintm masks the bstfltint interrupt in the int1 register (0x04). 0 = masked 1 = not masked thmbuck2intm thmbuck2intm masks the thmbuck2int interrupt in the int1 register (0x04). 0 = masked 1 = not masked thmbuck1intm masks the thmbuck1int interrupt in the int1 register (0x04). 0 = masked 1 = not masked uvloldo2intm masks the uvloldo2int interrupt in the int1 register (0x04). 0 = masked 1 = not masked uvloldo1intm masks the uvloldo1int interrupt in the int1 register (0x04). 0 = masked 1 = not masked thmldo2intm masks the thmldo2int interrupt in the int1 register (0x04). 0 = masked 1 = not masked thmldo1intm masks the thmldo1int interrupt in the int1 register (0x04). 0 = masked 1 = not masked maxim integrated 76 MAX20303 wearable power management solution www.maximintegrated.com
table 16. intmask2 register (0x0e) address: 0x0e mode: read/write bit 7 6 5 4 3 2 1 0 name apcmd respintm syserr intm lralock intm lraact intm bbstthm intm sysbatlim intm chgsys limintm apcmdrespintm masks the apcmdrespint interrupt in the int2 register (0x05). 0 = masked 1 = not masked syserrintm masks the syserrint interrupt in the int2 register (0x05). 0 = masked 1 = not masked lralockintm masks the lralockint interrupt in the int2 register (0x05). 0 = masked 1 = not masked lraactintm masks the lraactint interrupt in the int2 register (0x05). 0 = masked 1 = not masked bbstthmintm masks the bbstthmint interrupt in the int2 register (0x05). 0 = masked 1 = not masked sysbatlimintm masks the sysbatlimint interrupt in the int2 register (0x05). 0 = masked 1 = not masked chgsyslimintm masks the chgsyslimint interrupt in the int2 register (0x05). 0 = masked 1 = not masked maxim integrated 77 MAX20303 wearable power management solution www.maximintegrated.com
table 17. apdataout0 register (0x0f) table 18. apdataout1 register (0x10) table 19. apdataout2 register (0x11) table 20. apdataout3 register (0x12) table 21. apdataout4 register (0x13) ap interface registers address: 0x0f mode: read/write bit 7 6 5 4 3 2 1 0 name apdataout0[7:0] apdataout0[7:0] data register 0 for ap write commands. address: 0x10 mode: read/write bit 7 6 5 4 3 2 1 0 name apdataout1[7:0] apdataout1[7:0] data register 1 for ap write commands. address: 0x11 mode: read/write bit 7 6 5 4 3 2 1 0 name apdataout2[7:0] apdataout2[7:0] data register 2 for ap write commands. address: 0x12 mode: read/write bit 7 6 5 4 3 2 1 0 name apdataout3[7:0] apdataout3[7:0] data register 3 for ap write commands. address: 0x13 mode: read/write bit 7 6 5 4 3 2 1 0 name apdataout4[7:0] apdataout4[7:0] data register 4 for ap write commands. maxim integrated 78 MAX20303 wearable power management solution www.maximintegrated.com
table 22. apdataout5 register (0x14) table 23. apdataout6 register (0x15) table 24. apcmdout register (0x17) table 25. apresponse register (0x18) table 26. apdatain0 register (0x19) table 27. apdatain1 register (0x1a) address: 0x14 mode: read/write bit 7 6 5 4 3 2 1 0 name apdataout5[7:0] apdataout5[7:0] data register 5 for ap write commands. address: 0x15 mode: read/write bit 7 6 5 4 3 2 1 0 name apdataout6[7:0] apdataout6[7:0] data register 6 for ap write commands. address: 0x17 mode: read/write bit 7 6 5 4 3 2 1 0 name apcmdout[7:0] apcmdout[7:0] opcode command register address: 0x18 mode: read only bit 7 6 5 4 3 2 1 0 name apresponse [7:0] apresponse[7:0] ap command response register address: 0x19 mode: read only bit 7 6 5 4 3 2 1 0 name apdatain0[7:0] apdatain0[7:0] data register 0 for ap read commands. address: 0x1a mode: read only bit 7 6 5 4 3 2 1 0 name apdatain1[7:0] apdatain1[7:0] data register 1 for ap read commands. maxim integrated 79 MAX20303 wearable power management solution www.maximintegrated.com
table 28. apdatain2 register (0x1b) table 29. apdatain3 register (0x1c) table 30. apdatain4 register (0x1d) table 31. apdatain5 register (0x1e) table 32. ldodirect register (0x20) ldo direct register address: 0x1b mode: read only bit 7 6 5 4 3 2 1 0 name apdatain2[7:0] apdatain2[7:0] data register 2 for ap read commands. address: 0x1c mode: read only bit 7 6 5 4 3 2 1 0 name apdatain3[7:0] apdatain3[7:0] data register 3 for ap read commands. address: 0x1d mode: read only bit 7 6 5 4 3 2 1 0 name apdataout4[7:0] apdataout4[7:0] data register 4 for ap write commands. address: 0x1e mode: read only bit 7 6 5 4 3 2 1 0 name apdatain5[7:0] apdatain5[7:0] data register 5 for ap read commands. address: 0x20 mode: read/write bit 7 6 5 4 3 2 1 0 name ldo2dir en ldo1dir en ldo2diren ldo2 direct enable. valid only if ldo2en = 11 0 = ldo2 of 1 = ldo2 on ldo1diren ldo1 direct enable valid only if ldo1en = 11 0 = ldo1 of 1 = ldo1 on maxim integrated 80 MAX20303 wearable power management solution www.maximintegrated.com
table 33. mpcdirectwrite register (0x21) table 34. mpcdirectread register (0x22) mpc direct registers address: 0x21 mode: read/write bit 7 6 5 4 3 2 1 0 name mpc4write mpc3write mpc2write mpc1write mpc0write mpc4write mpc4 direct write (returns 0 if mpc is confgured as output (gpio_hizb = 1)) 0 = set mpc4 low 1 = set mpc4 high mpc3write mpc3 direct write (returns 0 if mpc is confgured as output (gpio_hizb = 1)) 0 = set mpc3 low 1 = set mpc3 high mpc2write mpc2 direct write (returns 0 if mpc is confgured as output (gpio_hizb = 1)) 0 = set mpc2 low 1 = set mpc2 high mpc1write mpc1 direct write (returns 0 if mpc is confgured as output (gpio_hizb = 1)) 0 = set mpc1 low 1 = set mpc1 high mpc0write mpc0 direct write (returns 0 if mpc is confgured as output (gpio_hizb = 1)) 0 = set mpc0 low 1 = set mpc0 high address: 0x22 mode: read only bit 7 6 5 4 3 2 1 0 name mpc4read mpc3read mpc2read mpc1read mpc0read mpc4read mpc4 direct readback 0 = mpc4 is low 1 = mpc4 is high mpc3read mpc3 direct readback 0 = mpc3 is low 1 = mpc3 is high mpc2read mpc2 direct readback 0 = mpc2 is low 1 = mpc2 is high mpc1read mpc1 direct readback 0 = mpc1 is low 1 = mpc1 is high mpc0read mpc0 direct readback 0 = mpc0 is low 1 = mpc0 is high maxim integrated 81 MAX20303 wearable power management solution www.maximintegrated.com
table 35. hptramaddr register (0x28) table 36. hptramdatah register (0x29) table 37. hptramdatam register (0x2a) table 38. hptramdatal register (0x2b) haptic ram registers address: 0x28 mode: read/write bit 7 6 5 4 3 2 1 0 name hptramadd[7:0] hptramadd[7:0] ram address to which haptic pattern data in registers 0x29, 0x2a, 0x2b will be written. address: 0x29 mode: read/write bit 7 6 5 4 3 2 1 0 name nlsx[1:0] ampsign amp[6:2] address: 0x2a mode: read/write bit 7 6 5 4 3 2 1 0 name amp[1:0] dur[4:0] wait[4] address: 0x2b mode: read/write bit 7 6 5 4 3 2 1 0 name wait[3:0] rpt[3:0] maxim integrated 82 MAX20303 wearable power management solution www.maximintegrated.com
table 39. ledstepdirect register (0x2c) table 40. led0direct register (0x2d) led direct registers address: 0x2c mode: read/write bit 7 6 5 4 3 2 1 0 name led2open led1open led0open ledistep[1:0] led2open led2 open detection (read only) 0 = v led2 > v led_det 1 = v led2 v led_det or led2 disabled led1open led1 open detection (read only) 0 = v led1 > v led_det 1 = v led1 v led_det or led1 disabled led0open led0 open detection (read only) 0 = v led0 > v led_det 1 = v led0 v led_det or led0 disabled ledistep[1:0] led direct current step register 00 = 0.6ma 01 = 1.0ma 10 = 1.2ma 11 = reserved address: 0x2d mode: read/write bit 7 6 5 4 3 2 1 0 name led0en[2:0] led0iset[4:0] led0en[2:0] led0 driver enable 000 = of 001 = led0 on 010 = controlled by internal charger status signal 011 = controlled by mpc0 100 = controlled by mpc1 101 = controlled by mpc2 110 = controlled by mpc3 111 = controlled by mpc4 led0iset[4:0] led0 direct step count led0 current in ma is given by (led0iset[4:0] + 1) x ledistep[1:0] 0x00 = 0.6ma/1.0ma/1.2ma 0x01 = 1.2ma/2.0ma/2.4ma 0x18 = 15ma/25ma/30ma maxim integrated 83 MAX20303 wearable power management solution www.maximintegrated.com
table 41. led1direct register (0x2e) table 42. led2direct register (0x2f) address: 0x2e mode: read/write bit 7 6 5 4 3 2 1 0 name led1en[2:0] led1iset[4:0] led1en[2:0] led1 driver enable 000 = of 001 = led1 on 010 = controlled by internal charger status signal 011 = controlled by mpc0 100 = controlled by mpc1 101 = controlled by mpc2 110 = controlled by mpc3 111 = controlled by mpc4 led1iset[4:0] led1 direct step count led1 current in ma is given by (led1iset[4:0] + 1) x ledistep[1:0] 0x00 = 0.6ma/1.0ma/1.2ma 0x01 = 1.2ma/2.0ma/2.4ma 0x18 = 15ma/25ma/30ma address: 0x2f mode: read/write bit 7 6 5 4 3 2 1 0 name led2en[2:0] led2iset[4:0] led2en[2:0] led2 driver enable 000 = of 001 = led2 on 010 = controlled by internal charger status signal 011 = controlled by mpc0 100 = controlled by mpc1 101 = controlled by mpc2 110 = controlled by mpc3 111 = controlled by mpc4 led2iset[4:0] led2 direct step count led2 current in ma is given by (led2iset[4:0] + 1) x ledistep[1:0] 0x00 = 0.6ma/1.0ma/1.2ma 0x01 = 1.2ma/2.0ma/2.4ma 0x18 = 15ma/25ma/30ma maxim integrated 84 MAX20303 wearable power management solution www.maximintegrated.com
table 43. hptdirect0 register (0x30) haptic direct registers address: 0x30 mode: read/write bit 7 6 5 4 3 2 1 0 name hptofimp hptthmprot dis hptocpr otdis hptofimp haptic driver output of state impedance 0 = when haptic driver is disabled, outputs are strongly shorted to gnd through low-side driver fets. 1 = when haptic driver is disabled, outputs are shorted to gnd with 15k pull-down. hptthmprotdis haptic driver thermal protection disable if hptthmprotdis = 0 and the haptic driver shuts down due to an over temperature condition, systemerror[7:0] = 0x24 is issued and hptlock = 1. see opcode 0xa8 for restarting the haptic driver 0 = thermal protection enabled. haptic driver will shut down if t j 150c (typ) 1 = thermal protection disabled. hptocprotdis haptic driver overcurrent protection disable if hptocprotdis = 0 and the haptic driver shuts down due to an overcurrent condition, systemerror[7:0] will equal to one of four codes (0x20-0x23) is issued and hptlock = 1. see opcode 0xa8 for restarting the haptic driver 0 = overcurrent protection enabled. haptic driver will shut down if current exceeds 1a (typ) 1 = overcurrent protection disabled. maxim integrated 85 MAX20303 wearable power management solution www.maximintegrated.com
table 44. hptdirect1 register (0x31) address: 0x31 mode: read/write bit 7 6 5 4 3 2 1 0 name hptexttrig hptramen hptdrven hptdrvmode[4:0] hptexttrig haptic driver external trigger pattern for etrg and ramhpi driver mode (hptdrvmode = 01100, 10010, respectively). 0 = no pattern triggered. 1 = vibration triggered hptramen haptic ram block enable 0 = ram disabled. 1 = ram enabled. hptdrven haptic driver enable in all modes, the haptic driver must be enabled at the same time or before providing the desired mode in hptdrvmod[4:0]. the hptdrven bit must remain set during the vibration. once vibration fnishes, hptdrvmod[4:0] must be set to 00000 before the haptic driver may be disabled via hptdrven = 0 for power savings. 0 = haptic driver block disabled. 1 = haptic driver block enabled. hptdrvmode [4:0] haptic driver mode selection 00000 = disable haptic driver 00001 = enable ppwm0 mode and provide amplitude based on pwm duty cycle on mpc0 00010 = enable ppwm1 mode and provide amplitude based on pwm duty cycle on mpc1 00011 = enable ppwm2 mode and provide amplitude based on pwm duty cycle on mpc2 00100 = enable ppwm3 mode and provide amplitude based on pwm duty cycle on mpc3 00101 = enable ppwm4 mode and provide amplitude based on pwm duty cycle on mpc4 00110 = enable rti2c mode and provide current output amplitude based on the contents of hptrti2camp(0x32) 00111 = enable etrg0 mode. provide a pulse on mpc0 to start vibration (see etrg mode section for details) 01000 = enable etrg1 mode. provide a pulse on mpc1 to start vibration (see etrg mode section for details) 01001 = enable etrg2 mode. provide a pulse on mpc2 to start vibration (see etrg mode section for details) 01010 = enable etrg3 mode. provide a pulse on mpc3 to start vibration (see etrg mode section for details) 01011 = enable etrg4 mode. provide a pulse on mpc4 to start vibration (see etrg mode section for details) 01100 = enable etrgi mode via i2c. set hptexttrg(0x31[7]) bit to start vibration (see etrg mode section for details) 01101 = enable ramhp0 mode. provide a pulse on mpc0 to start vibration (see ramhp mode section for details) 01110 = enable ramhp1 mode. provide a pulse on mpc1 to start vibration (see ramhp mode section for details) 01111 = enable ramhp2 mode. provide a pulse on mpc2 to start vibration (see ramhp mode section for details) 10000 = enable ramhp3 mode. provide a pulse on mpc3 to start vibration (see ramhp mode section for details) 10001 = enable ramhp4 mode. provide a pulse on mpc4 to start vibration (see ramhp mode section for details) 10010 = enable ramhpi mode via i2c. set hptexttrg(0x31[7]) bit to start vibration (see ramhp mode section for details) maxim integrated 86 MAX20303 wearable power management solution www.maximintegrated.com
table 45. hptrti2camp register (0x32) table 46. hptpatramaddr register (0x33) address: 0x32 mode: read/write bit 7 6 5 4 3 2 1 0 name hptrti2c sign hptrti2camp[6:0] hptrti2csign sign of haptic pattern amplitude in rti2c mode (hptdrvmode = 00110) hptrti2camp [6:0] amplitude of haptic pattern in rti2c mode (hptdrvmode = 00110). lsb = v sys /128 address: 0x33 mode: read/write bit 7 6 5 4 3 2 1 0 name hptpatramaddr[7:0] hptpatramaddr [7:0] address of frst sample in vibration pattern to be run in ramhp_ mode (hptdrvmode = 01101, 01111, 10000, 10001, 10010) maxim integrated 87 MAX20303 wearable power management solution www.maximintegrated.com
table 47. 0x01 C gpio_config_write gpio confg commands ap command register descriptions mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x01) 0 0 0 0 0 0 0 1 apdataout0 gpio0cmd gpio0od gpio0hizb gpio0res gpio0pup apdataout1 gpio1cmd gpio1od gpio1hizb gpio1res gpio1pup apdataout2 gpio2cmd gpio2od gpio2hizb gpio2res gpio2pup apdataout3 gpio3cmd gpio3od gpio3hizb gpio3res gpio3pup apdataout4 gpio4cmd gpio4od gpio4hizb gpio4res gpio4pup gpio_cmd gpio output control valid only if gpio_ is confgured as output (gpio_hizb = 1) 0 = mpc_ output controlled by ap command 1 = mpc_ output controlled by i 2 c direct register gpio_od gpio output confguration valid only if gpio_ is confgured as output (gpio_hizb = 1) 0 = mpc_ is push-pull connected to bk2out 1 = mpc_ is open drain gpio_hizb gpio direction 0 = mpc_ is hi-z. input bufer enabled 1 = mpc_ is not hi-z. output bufer enabled gpio_res gpio resistor presence valid only if gpio_ is confgured as input (gpio_hizb = 0) 0 = resistor not connected to mpc_ 1 = resistor connected to mpc_ gpio_pup gpio resistor confguration valid only if there is a resistor on gpio_ (gpio_res = 1) 0 = pulldown connected to mpc_ 1 = pullup to v ccint connected mcp_ maxim integrated 88 MAX20303 wearable power management solution www.maximintegrated.com
table 48. gpio_config_write response table 49. 0x02 C gpio_config_read table 50. gpio_config_read response table 51. 0x03 C gpio_control_write bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x01) 0 0 0 0 0 0 0 1 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x02) 0 0 0 0 0 0 1 0 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x02) 0 0 0 0 0 0 1 0 apdatain0 gpio0cmd gpio0od gpio0hizb gpio0res gpio0pup apdatain1 gpio1cmd gpio1od gpio1hizb gpio1res gpio1pup apdatain2 gpio2cmd gpio2od gpio2hizb gpio2res gpio2pup apdatain3 gpio3cmd gpio3od gpio3hizb gpio3res gpio3pup apdatain4 gpio4cmd gpio4od gpio4hizb gpio4res gpio4pup mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x03) 0 0 0 0 0 0 1 1 apdataout0 gpio4out gpio3out gpio2out gpio1out gpio0out gpio_out valid only if gpio_ is confgured as output driven by ap command (gpio_cmd = 0) 0 = set gpio_ low 1 = set gpio_ high (if gpio_od = 0)/hi-z (if gpio_od = 1) maxim integrated 89 MAX20303 wearable power management solution www.maximintegrated.com
table 54. gpio_control_read response table 52. gpio_control_write response table 53. 0x04 C gpio_control_read table 55. 0x06 C mpc_config_write mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x04) 0 0 0 0 0 1 0 0 apdatain0 gpio4out gpio3out gpio2out gpio1out gpio0out apdatain1 gpio4stat gpio3stat gpio2stat gpio1stat gpio0stat gpio_stat gpio state 0 = gpio_ low 1 = gpio_ high (if gpio_od = 0) / hi-z (if gpio_od = 1) bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x03) 0 0 0 0 0 0 1 1 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x04) 0 0 0 0 0 1 0 0 mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x06) 0 0 0 0 0 1 1 0 apdataout0 mpc0 bbstmpc en sfoutm pcen cpmp cen ldo2mp cen ldo1mp cen buck2mp cen buck1mp cen bstmp cen apdataout1 mpc1 bbstmpc en sfoutm pcen cpmp cen ldo2mp cen ldo1mp cen buck2mp cen buck1mp cen bstmp cen apdataout2 mpc2 bbstmpc en sfoutm pcen cpmp cen ldo2mp cen ldo1mp cen buck2mp cen buck1mp cen bstmp cen apdataout3 mpc3 bbstmpc en sfoutm pcen cpmp cen ldo2mp cen ldo1mp cen buck2mp cen buck1mp cen bstmp cen apdataout4 mpc4 bbstmpc en sfoutm pcen cpmp cen ldo2mp cen ldo1mp cen buck2mp cen buck1mp cen bstmp cen shaded felds are defaulted to 1 if the corresponding resources contain the following otp setting: xxxseq = 111 (controlled by bsten after 100% of boot/por process delay control) xxxen = 10 (mpc registers control) maxim integrated 90 MAX20303 wearable power management solution www.maximintegrated.com
table 55. 0x06 C mpc_config_write bbstmpcen buck-boost enable confguration efective only when bbstseq = 111 and bbsten = 10 0 = mpc_ has no efect on buck-boost 1 = buck-boost enabled when mpc_ is high sfoutmpcen sfout ldo enable confguration efective only when sfouten = 10 0 = mpc_ has no efect on sfout ldo 1 = sfout ldo enabled when chgin is present and mpc_ is high cpmpcen charge pump enable confguration efective only when cpseq = 111 and cpen = 10 0 = mpc_ has no efect on charge pump 1 = charge pump enabled when mpc_ is high ldo2mpcen ldo2 enable confguration efective only when ldo2seq = 111 and ldo2en = 10 0 = mpc_ has no efect on ldo2 1 = ldo2 enabled when mpc_ is high ldo1mpcen ldo1 enable confguration efective only when ldo1seq = 111 and ldo1en = 10 0 = mpc_ has no efect on ldo1 1 = ldo1 enabled when mpc_ is high buck2mpcen buck2 enable confguration efective only when buck2seq = 111 and buck2en = 10 0 = mpc_ has no efect on buck2 1 = buck2 enabled when mpc_ is high buck1mpcen buck1 enable confguration efective only when buck1seq = 111 and buck1en = 10 0 = mpc_ has no efect on buck1 1 = buck1 enabled when mpc_ is high bstmpcen boost enable confguration efective only when bstseq = 111 and bsten = 10 0 = mpc_ has no efect on boost 1 = boost enabled when mpc_ is high maxim integrated 91 MAX20303 wearable power management solution www.maximintegrated.com
table 56. mpc_config_write response table 57. 0x07 C mpc_config_read table 58. mpc_config_read response bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x06) 0 0 0 0 0 1 1 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x07) 0 0 0 0 0 1 1 1 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x07) 0 0 0 0 0 1 1 1 apdatain0 mpc0 bbstmpc en sfoutm pcen cpmp cen ldo2mp cen ldo1mp cen buck2mp cen buck1mp cen bstmp cen apdatain1 mpc1 bbstmpc en sfoutm pcen cpmp cen ldo2mp cen ldo1mp cen buck2mp cen buck1mp cen bstmp cen apdatain2 mpc2 bbstmpc en sfoutm pcen cpmp cen ldo2mp cen ldo1mp cen buck2mp cen buck1mp cen bstmp cen apdatain3 mpc3 bbstmpc en sfoutm pcen cpmp cen ldo2mp cen ldo1mp cen buck2mp cen buck1mp cen bstmp cen apdatain4 mpc4 bbstmpc en sfoutm pcen cpmp cen ldo2mp cen ldo1mp cen buck2mp cen buck1mp cen bstmp cen maxim integrated 92 MAX20303 wearable power management solution www.maximintegrated.com
table 59. 0x10 C inputcurrent_config_write table 60. inputcurrent_config_write response table 61. 0x11 C inputcurrent_config_read input current limit commands note: registers written using opcodes 0x10, 0x14, 0x16, 0x18, 0x1a, and 0x1c are reset on charger insertion. after receiving a usbok interrupt, wait 10ms before writing any data using these opcodes. failure to wait 10ms may result in the data being overwritten to the default. mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x10) 0 0 0 1 0 0 0 0 apdataout0 ilimblank[1:0] ilimcntl[2:0] ilimblank [1:0] chgin current limiter blanking time 00 = no debounce (allow a few clock cycles for resampling) 01 = 0.5ms 10 = 1ms 11 = 10ms ilimcntl[2:0] chgin programmable input current limit (see ec table for details) 000 = 50ma 001 =100ma 010 = 150ma 011 = 200ma 100 = 300ma 101 = 400ma 110 = 500ma 111 = 1000ma bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x10) 0 0 0 1 0 0 0 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x11) 0 0 0 1 0 0 0 0 maxim integrated 93 MAX20303 wearable power management solution www.maximintegrated.com
table 63. 0x12 C thermalshutdown_config_read table 64. thermalshutdown_config_read response table 62. inputcurrent_config_read response thermal shutdown confguration commands mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x12) 0 0 0 1 0 0 1 0 apdataout0 tshdntmo[1:0] tshdntmo [1:0] thermal shutdown retry timeout boot sequence only 00 = latch-of (see power state diagrams (figure 1a to figure 1f) for restart procedure) 01 = 500ms 10 = 1s 11 = 5s b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x12) 0 0 0 1 0 0 1 0 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x11) 0 0 0 1 0 0 0 0 apdatain0 ilimblank[1:0] ilimcntl[2:0] maxim integrated 94 MAX20303 wearable power management solution www.maximintegrated.com
table 65. 0x14 C charger_config_write mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x14) 0 0 0 1 0 1 0 0 apdataout0 mtchgtmr[1:0] fchgtmr[1:0] pchgtmr[1:0] apdataout1 vpchg[2:0] ipchg[1:0] chgdone[1:0] apdataout2 chgauto stp chgauto re batrechg[1:0] batreg[3:0] apdataout3 sysminvlt[2:0] mtchgtmr[1:0] maintain charge timer setting 00 = 0min 01 = 15min 10 = 30min 11 = 60min fchgtmr[1:0] fast charge timer setting 00 = 75min 01 = 150min 10 = 300min 11 = 600min pchgtmr[1:0] pre-charge timer setting 00 = 30min 01 = 60min 10 = 120min 11 = 240min vpchg[2:0] precharge voltage threshold setting 000 = 2.1v 001 = 2.25v 010 = 2.40v 011 = 2.55v 100 = 2.70v 101 = 2.85v 110 = 3.00v 111 = 3.15v ipchg[1:0] precharge current setting 00 = 0.05 x ifchg 01 = 0.1 x ifchg 10 = 0.2 x ifchg 11 = 0.3 x ifchg charger confguratoin commands maxim integrated 95 MAX20303 wearable power management solution www.maximintegrated.com
table 65. 0x14 C charger_config_write (continued) chgdone[1:0] charge done threshold setting 00 = 0.05 x ifchg 01 = 0.1 x ifchg 10 = 0.2 x ifchg 11 = 0.3 x ifchg chgautostp charger auto-stop controls the transition from maintain charger to maintain charger done. 0 = auto-stop disabled. 1 = auto-stop enabled. chgautore charger auto-restart control 0 = charger remains in maintain charge done even when v bat is less than charge restart threshold (see charger state diagram) 1 = charger automatically restarts when v bat drops below charge restart threshold batrechg[1:0] recharge threshold in relation to batreg[3:0] 00 = batreg - 70mv 01 = batreg - 120mv 10 = batreg - 170mv 11 = batreg - 220mv batreg[3:0] battery regulation voltage 0000 = 4.05v 0001 = 4.10v 0010 = 4.15v 0011 = 4.20v 0100 = 4.25v 0101 = 4.30v 0110 = 4.35v 0111 = 4.40v 1000 = 4.45v 1001 = 4.5v 1010 = 4.55v 1011 = 4.6v sysminvlt[2:0] system voltage minimum threshold 000 : 3.6v 001: 3.7v 010: 3.8v 011: 3.9v 100: 4.0v 101: 4.1v 110: 4.2v 111: 4.3v charger confguratoin commands (continued) maxim integrated 96 MAX20303 wearable power management solution www.maximintegrated.com
table 66. charger_config_write response table 67. 0x15 C charger_config_read table 68. charger_config_read response bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x14) 0 0 0 1 0 1 0 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x15) 0 0 0 1 0 1 0 1 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x15) 0 0 0 1 0 1 0 1 apdatain0 mtchgtmr[1:0] fchgtmr[1:0] pchgtmr[1:0] apdatain1 vpchg[2:0] ipchg[1:0] chgdone[1:0] apdatain2 chgauto stp chgauto re batrechg[1:0] batreg[3:0] apdatain3 sysminvlt[2:0] maxim integrated 97 MAX20303 wearable power management solution www.maximintegrated.com
table 69. 0x16 C chargerthermallimits_config_write table 70. chargerthermallimits_config_write response table 71. 0x17 C chargerthermallimits_config_read mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x16) 0 0 0 1 0 1 1 0 apdataout0 coldlim[7:0] apdataout1 coollim[7:0] apdataout2 warmlim[7:0] apdataout3 hotlim[7:0] apdataout4 password[15:8] apdataout5 password[7:0] coldlim[7:0] cold zone boundary defnes the falling threshold voltage on thm that defnes the cold charging temperature zone. 8-bit value, 1.8v full-scale voltage. coollim[7:0] cool zone boundary defnes the falling threshold voltage on thm that defnes the cool charging temperature zone. 8-bit value, 1.8v full-scale voltage. warmlim[7:0] warm zone boundary defnes the rising threshold voltage on thm that defnes the cool charging temperature zone. 8-bit value, 1.8v full-scale voltage. hotlim[7:0] hot zone boundary defnes the rising threshold voltage on thm that defnes the hot charging temperature zone. 8-bit value, 1.8v full-scale voltage. password[15:0] thermal limit confguration password if write-protect enabled, chargerthermallimits can be confgured using the following password: 0x1e7a. if write-protect enabled, incorrect password will result in systemerror[7:0] = 0x11. bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x16) 0 0 0 1 0 1 1 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x17) 0 0 0 1 0 1 1 1 maxim integrated 98 MAX20303 wearable power management solution www.maximintegrated.com
table 72. chargerthermallimits_config_read response table 73. 0x18 C chargerthermalreg_config_write bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x17) 0 0 0 1 0 1 1 0 apdatain0 coldlim[7:0] apdatain1 coollim[8:0] apdatain2 warmlim[7:0] apdatain3 hotlim[7:0] mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x18) 0 0 0 1 1 0 0 0 apdataout0 coldchgen coldbatreg[1:0] coldfchg[2:0] apdataout1 coolchgen coolbatreg[1:0] coolfchg[2:0] apdataout2 roombatreg[1:0] roomfchg[2:0] apdataout3 warmchgen warmbatreg[1:0] warmfchg[2:0] apdataout4 hotchgen hotbatreg[1:0] hotfchg[2:0] apdataout5 password[15:8] apdataout6 password[7:0] coldchgen cold zone charger control determines if charger is enabled for cold temperature zone. 0 = charging disabled in cold temperature zone. 1 = charging enabled in cold temperature zone. coldbatreg [1:0] cold zone battery regulation voltage sets modifed batreg[3:0] in the cold temperature zone. 00 = batreg-150mv 01 = batreg-100mv 10 = batreg-50mv 11 = batreg coldfchg [2:0] cold zone fast charge current scaling sets modifed fast charge in the cold temperature zone. 000 = 0.2 x ifchg 001 = 0.3 x ifchg 010 = 0.4 x ifchg 011 = 0.5 x ifchg 100 = 0.6 x ifchg 101 = 0.7 x ifchg 110 = 0.8 x ifchg 111 = 1.0 x ifchg maxim integrated 99 MAX20303 wearable power management solution www.maximintegrated.com
table 73. 0x18 C chargerthermalreg_config_write (continued) coolchgen cool zone charger control determines if charger is enabled for cool temperature zone. 0 = charging disabled in cool temperature zone. 1 = charging enabled in cool temperature zone. coolbatreg [1:0] cool zone battery regulation voltage sets modifed batreg[3:0] in the cool temperature zone. 00 = batreg-150mv 01 = batreg-100mv 10 = batreg-50mv 11 = batreg coolfchg [2:0] cool zone fast charge current scaling sets modifed fast charge in the cool temperature zone. 000 = 0.2 x ifchg 001 = 0.3 x ifchg 010 = 0.4 x ifchg 011 = 0.5 x ifchg 100 = 0.6 x ifchg 101 = 0.7 x ifchg 110 = 0.8 x ifchg 111 = 1.0 x ifchg roombat reg[4:3] room zone battery regulation voltage sets the modifed batreg[3:0] in the room temperature zone. 00 = batreg-150mv 01 = batreg-100mv 10 = batreg-50mv 11 = batreg roomfchg [2:0] room zone fast charge current scaling sets the modifed fast charge in the room temperature zone. 000 = 0.2 x ifchg 001 = 0.3 x ifchg 010 = 0.4 x ifchg 011 = 0.5 x ifchg 100 = 0.6 x ifchg 101 = 0.7 x ifchg 110 = 0.8 x ifchg 111 = 1.0 x ifchg warmchg en warm zone charger control determines if charger is enabled for warm temperature zone. 0 = charging disabled in warm temperature zone. 1 = charging enabled in warm temperature zone. maxim integrated 100 MAX20303 wearable power management solution www.maximintegrated.com
table 73. 0x18 C chargerthermalreg_config_write (continued) warmbat reg[1:0] warm zone battery regulation voltage sets the modifed batreg[3:0] in the warm temperature zone. 00 = batreg-150mv 01 = batreg-100mv 10 = batreg-50mv 11 = batreg warmfchg [2:0] warm zone fast charge current scaling sets the modifed fast charge in the warm temperature zone. 000 = 0.2 x ifchg 001 = 0.3 x ifchg 010 = 0.4 x ifchg 011 = 0.5 x ifchg 100 = 0.6 x ifchg 101 = 0.7 x ifchg 110 = 0.8 x ifchg 111 = 1.0 x ifchg hotchgen hot zone charger control determines if charger is enabled for hot temperature zone. 0 = charging disabled in hot temperature zone. 1 = charging enabled in hot temperature zone. hotbatreg [1:0] hot zone battery regulation voltage sets the modifed batreg[3:0] in the hot temperature zone. 00 = batreg-150mv 01 = batreg-100mv 10 = batreg-50mv 11 = batreg hotfchg [2:0] hot zone fast charge current scaling sets the modifed fast charge in the hot temperature zone. 000 = 0.2 x ifchg 001 = 0.3 x ifchg 010 = 0.4 x ifchg 011 = 0.5 x ifchg 100 = 0.6 x ifchg 101 = 0.7 x ifchg 110 = 0.8 x ifchg 111 = 1.0 x ifchg password [15:0] charger thermal limit confguration password if write protect enabled, chargerthermallimits can be confgured using the following password: 0x1e7a if write protect enabled, incorrect password will result in system error 0x11. maxim integrated 101 MAX20303 wearable power management solution www.maximintegrated.com
table 74. chargerthermalreg_config_write response table 75. 0x19 C chargerthermalreg_config_read table 76. chargerthermalreg_config_read response table 77. 0x1a C charger_controlwrite table 78. charger_controlwrite response bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x18) 0 0 0 1 1 0 0 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x19) 0 0 0 1 1 0 0 1 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x19) 0 0 0 1 1 0 0 1 apdatain0 coldchgen coldbatreg[1:0] coldfchg[2:0] apdatain1 coolchgen coolbatreg[1:0] coolfchg[2:0] apdatain2 roombatreg[1:0] roomfchg[2:0] apdatain3 warmchgen warmbatreg[1:0] warmfchg[2:0] apdatain4 hotchgen hotbatreg[1:0] hotfchg[2:0] mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x1a) 0 0 0 1 1 0 1 0 apdataout0 thmen chgen thmen on/of control for thermal monitor 0 = thermal monitor disabled 1 = thermal monitor enabled chgen on/of control for charger (does not afect sys node). 0 = charger disabled 1 = charger enabled bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x1a) 0 0 0 1 1 0 1 0 maxim integrated 102 MAX20303 wearable power management solution www.maximintegrated.com
table 79. 0x1b C charger_controlread table 80. charger_control_read response table 81. 0x1c C charger_ jeitahyst_controlwrite table 82. charger_jeitahyst_controlwrite response table 83. charger_jeitahyst_controlread table 84. charger_jeitahyst_controlread response mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x1b) 0 0 0 1 1 0 1 1 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x1b) 0 0 0 1 1 0 1 1 apdatain0 thmen chgen mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x1c) 0 0 0 1 1 1 0 0 apdataout0 jeitahys en jeitahyslvl jeitahys en jeita hysteresist control 0 = hysteresis disabled. 1 = hysteresis enabled. jeitahys lvl amplitude of jeita hysteresis (lsb = 0.39%v dig ) 00001 = 0.39%v dig 00010 = 0.78%v dig 11111 = 12.09%vdig bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x1c) 0 0 0 1 1 1 0 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x1d) 0 0 0 1 1 1 0 1 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x1d) 0 0 0 1 1 1 0 1 apdatain0 jeitahysen jeitahyslvl maxim integrated 103 MAX20303 wearable power management solution www.maximintegrated.com
table 85. 0x30 C bst_config_write boost confguration commands mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x30) 0 0 1 1 0 0 0 0 apdataout0 bsten[1:0] apdataout1 bstpsvdsc bstiadpten bstfaststrt bstfetscale apdataout2 bstiset[3:0] apdataout3 bstvset[5:0] bsten[1:0] boost enable confguration (efective only when bstseq = 111) 00 = disabled 01 = enabled 10 = controlled by mpc_confg_write command 11 = reserved bstpsvdsc boost passive discharge control 0 = boost output will be discharged only when entering of and hard-reset modes. 1 = boost output will be discharged only when entering of and hard-reset modes and when bsten is set to 000. bstiadpten boost adaptive peak current control 0 = inductor peak current fxed at the programmed value by means of bstiset 1 = inductor peak current automatically increased to provide better load regulation bstfaststrt boost fast start time 0 = time to full current capability during startup =100ms 1 = time to full current capability during startup = 50ms. precharge with 2x current bstfetscale boost fet scaling 0 = no fet scaling 1 = active boost fet size scaled down by half to optimize efciency for low inductor peak current settings bstiset[3:0] boost nominal inductor peak current setting 25ma step resolution 0000 = 100ma 0001 = 125ma 0010 = 150ma . 1111 = 475ma bstvset[5:0] boost output voltage setting linear scale from 5v to 20v in 250mv increments 000000 = 5v 000001 = 5.25v 111011 = 19.75v 111011 = 20v >111100 = reserved maxim integrated 104 MAX20303 wearable power management solution www.maximintegrated.com
table 86. bst_config_write response table 87. 0x31 C bst_config_read table 88. bst_config_read response bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x30) 0 0 1 1 0 0 0 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x31) 0 0 1 1 0 0 0 1 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x31) 0 0 1 1 0 0 0 1 apdatain0 bsten[1:0] apdatain1 bstpsvdsc bstiadpten bstfaststrt bstfetscale apdatain2 bstiset[3:0] apdatain3 reserved bstvset[5:0] apdatain4 bstseq[2:0] bstseq[2:0] boost enable confguration (read only) 000 = disabled 001 = reserved 010 = enabled at 0% of boot/por process delay control 011 = enabled at 25% of boot/por process delay control 100 = enabled at 50% of boot/por process delay control 101 = reserved 110 = reserved 111 = controlled by bst1en after 100% of boot/por process delay control maxim integrated 105 MAX20303 wearable power management solution www.maximintegrated.com
table 89. 0x35 C buck1_config_write buck confguration commands mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x35) 0 0 1 1 0 1 0 1 apdataout0 buck1psv dsc buck1sft strt buck1act dsc buck1low emi buck1iadpt en buck1fet scale apdataout1 buck1vset[5:0] apdataout2 buck1izcset[1:0] buck1iset[3:0] apdataout3 buck1en[1:0] buck1psv dsc buck1 passive discharge control 0 = buck1 passively discharged only in hard-reset 1 = buck1 passively discharged in hard-reset or enable low buck1sft strt buck1 soft start time buck1 has reduced current capability during soft-start 0 = 50ms 1 = 25ms buck1act dsc buck1 active discharge control 0 = buck1 actively discharged only in hard-reset 1 = buck1 actively discharged in hard-reset or enable low buck1low emi buck1 low emi mode 0 = normal operation 1 = increase rise/fall time on blx by 3x buck1iadpt en buck1 adaptive peak current mode 0 = inductor peak current fxed at the programmed value by means of buck1iset 1 = inductor peak current automatically increased to provide better load regulation buck1fet scale buck1 force fet scaling reduce the fet size by factor 2. use it to optimize the efciency for buck1iset <100ma 0: fet scaling disabled 1: fet scaling enabled buck1vset [5:0] buck1 output voltage setting 0.8v to 2.375v, linear scale, 25mv increments 000000 = 0.8v 000001 = 0.825v 111111 = 2.375v maxim integrated 106 MAX20303 wearable power management solution www.maximintegrated.com
table 90. buck1_config_write response table 91. 0x36 C buck1_config_read table 89. 0x35 C buck1_config_write (continued) bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x35) 0 0 1 1 0 1 0 1 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x36) 0 0 1 1 0 1 1 0 buck1izc set[1:0] buck1 zero crossing current threshold optimizes buck1 for a given voltage setting. 00 = 10ma, use for buck1vset < 1v 01 = 20ma, use for 1v < buck1vset < 1.8v 10 = 30ma, use for 1.8v < buck1vset < 3v 11 = 40ma, use for buck1vset > 3v buck1iset [3:0] buck1 inductor current peak current setting 25ma step 0000 = 0ma 0001 = 25ma 1111 = 375ma buck1en [1:0] buck1 enable confguration (efective only when buck1seq == 111) 00 = disabled: bk1out not actively discharged unless hard-reset/shutdown/of mode 01 = enabled 10 = controlled by mpc_ (see mpc_confg_write) 11 = reserved maxim integrated 107 MAX20303 wearable power management solution www.maximintegrated.com
table 92. buck1_config_read response table 93. 0x37 C buck1_dvsconfig_write bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x36) 0 0 1 1 0 1 1 0 apdatain0 buck1psv dsc buck1fast buck1act dsc buck1low emi buck1en fmax buck1fet scale apdatain1 buck1vset[5:0] apdatain2 buck1izcset[1:0] buck1iset[3:0] apdatain3 buck1en[1:0] apdatain4 buck1seq[2:0] buck1seq [2:0] buck1 enable confguration (read only) 000 = disabled 001 = reserved 010 = enabled at 0% of boot/ por process delay control 011 = enabled at 25% of boot/ por process delay control 100 = enabled at 50% of boot/ por process delay control 101 = reserved 110 = reserved 111 = controlled by buck1en [1:0] after 100% of boot/por process delay control mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x37) 0 0 1 1 0 1 1 1 apdataout0 buck1vset[5:0] apdataout1 buck1alternatevset[5:0] apdataout2 mpc4 mpc3 mpc2 mpc1 mpc0 buck1vset [5:0] buck1 voltage setting for dynamic voltage scaling function: this is the voltage set on buck1 after a positive edge on mpc_. 0.8v to 2.375v, linear scale, 25mv increments 000000 = 0.8v 000001 = 0.825v 111111 = 2.375v buck1altern atevset[5:0] buck1 alternate voltage setting for dynamic voltage scaling function: this is the voltage set on buck1 upon writing this command or after a negative edge on mpc_. 0.8v to 2.375v, linear scale, 25mv increments 000000 = 0.8v 000001 = 0.825v 111111 = 2.375v mpc_ this selects the mpc pin used for alternate voltage function. if an mpc is used for dynamic voltage scaling, all other functions of that mpc are disabled. mpc works on edge, so the static value of mpc does not matter. maxim integrated 108 MAX20303 wearable power management solution www.maximintegrated.com
table 94. buck1_dvsconfig_write response table 95. 0x3a C buck2_config_write bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x37) 0 0 1 1 0 1 1 1 mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x3a) 0 0 1 1 1 0 1 0 apdataout0 buck2psv dsc buck2sft strt buck2act dsc buck2low emi buck2iadpt en buck2fet scale apdataout1 buck2vset[5:0] apdataout2 buck2izcset[1:0] buck2iset[3:0] apdataout3 buck2en[1:0] buck2psv dsc buck2 passive discharge control 0 = buck2 passively discharged only in hard-reset 1 = buck2 passively discharged in hard-reset or enable low buck2sftstrt buck2 soft start time buck2 has reduced current capability during soft-start 0 = 50ms 1 = 25ms buck2act dsc buck2 active discharge control 0 = buck2 actively discharged only in hard-reset 1 = buck2 actively discharged in hard-reset or enable low buck2low emi buck2 low emi mode 0 = normal operation 1 = increase rise/fall time on blx by 3x buck2iadpt en buck2 adaptive peak current mode 0 = inductor peak current fxed at the programmed value by means of buck1iset 1 = inductor peak current automatically increased to provide better load regulation buck2fet scale buck2 force fet scaling reduce the fet size by factor 2. use it to optimize the efciency for buck1iset <100ma 0 = fet scaling disabled 1 = fet scaling enabled buck2vset [5:0] buck2 output voltage setting 0.8v to 3.95v, linear scale, 50mv increments 000000 = 0.8v 000001 = 0.85v 111111 = 3.95v maxim integrated 109 MAX20303 wearable power management solution www.maximintegrated.com
table 95. 0x3a C buck2_config_write (continued) table 96. buck2_config_write response table 97. 0x3b C buck2_config_read buck2izcset [1:0] buck2 zero crossing current threshold optimizes buck2 for a given voltage setting. 00 = 10ma, use for buck2vset < 1v 01 = 20ma, use for 1v < buck2vset < 1.8v 10 = 30ma, use for 1.8v < buck2vset < 3v 11 = 40ma, use for buck2vset > 3v buck2iset [3:0] buck2 inductor current peak current setting 25ma step 0000 = 0ma 0001 = 25ma 1111 = 375ma buck2en[1:0] buck2 enable confguration (efective only when buck2seq == 111) 00 = disabled 01 = enabled 10 = controlled by mpc_confg_write command 11 = reserved bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x3b) 0 0 1 1 1 0 1 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x3b) 0 0 1 1 1 0 1 1 maxim integrated 110 MAX20303 wearable power management solution www.maximintegrated.com
table 98. buck2_config_read response table 99. 0x3c C buck2_dvsconfig_write bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x3b) 0 0 1 1 1 0 1 1 apdatain0 buck2psv dsc buck2sft strt buck2act dsc buck2low emi buck2iadpt en buck2fet scale apdatain1 buck2vset[5:0] apdatain2 buck2izcset[1:0] buck2iset[3:0] apdatain3 buck2en[1:0] apdatain4 buck2seq[2:0] buck2seq [2:0] buck2 enable confguration (read only) 000 = disabled 001 = reserved 010 = enabled at 0% of boot/ por process delay control 011 = enabled at 25% of boot/ por process delay control 100 = enabled at 50% of boot/ por process delay control 101 = reserved 110 = reserved 111 = controlled by buck2en [1:0] after 100% of boot/por process delay control mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x3c) 0 0 1 1 1 1 0 0 apdataout0 buck2vset[5:0] apdataout1 buck2alternatevset[5:0] apdataout2 mpc4 mpc3 mpc2 mpc1 mpc0 buck2vset [5:0] buck2 voltage setting for dynamic voltage scaling function: this is the voltage set on buck2 after a positive edge on mpc_. 0.8v to 3.95v, linear scale, 50mv increments 000000 = 0.8v 000001 = 0.85v 111111 = 3.95v buck2altern atevset[5:0] buck2 alternate voltage setting for dynamic voltage scaling function: this is the voltage set on buck2 upon writing this command or after a negative edge on mpc_. 0.8v to 3.95v, linear scale, 50mv increments 000000 = 0.8v 000001 = 0.85v 111111 = 3.95v mpc_ this selects the mpc pin used for alternate voltage function. if an mpc is used for dynamic voltage scaling, all other functions of that mpc are disabled. mpc works on edge, so the static value of mpc does not matter. maxim integrated 111 MAX20303 wearable power management solution www.maximintegrated.com
table 100. buck2_dvsconfig_write response table 101. 0x40 C ldo1_config_write bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x3c) 0 0 1 1 1 1 0 0 mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x40) 0 1 0 0 0 0 0 0 apdataout0 ldo1pas dsc ldo1act dsc ldo1md ldo1en[1:0] apdataout1 ldo1vset[5:0] ldo1pas dsc ldo1 passive discharge control 0 = ldo1 output will be discharged only entering of and hard-reset modes. 1 = ldo1 output will be discharged only entering of and hard-reset modes and when the enable is low ldo1act dsc ldo1 active discharge control 0 = ldo1 output will be actively discharged only in hard-reset mode 1 = ldo1 output will be actively discharged in hard-reset mode and also when its enable goes low ldo1md ldo1 mode control when fet is on, the output is unregulated. this setting is internally latched and can change only when the ldo is disabled. 0 = normal ldo operating mode 1 = load switch mode. fet is either fully on or of depending on state of ldo1en. ldo1en [1:0] ldo1 enable confguration (efective only when ldo1seq[2:0] == 111) 00 = disabled 01 = enabled 10 = controlled by mpc_confg_write command 11 = controlled by ldodirect register ldo1vset [5:0] ldo1 output voltage settingClimited by input supply 0.5v to 1.95v, linear scale, 25mv increments 000000 = 0.5v 000001 = 0.525v 111010 = 1.95v >111010 = limited by input supply ldo confguration commands maxim integrated 112 MAX20303 wearable power management solution www.maximintegrated.com
table 102. ldo1_config_write response table 103. 0x41 C ldo1_config_read table 104. ldo1_config_read response bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x40) 0 1 0 0 0 0 0 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x41) 0 1 0 0 0 0 0 1 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x41) 0 1 0 0 0 0 0 1 apdatain0 ldo1pas dsc ldo1act dsc ldo1md ldo1en[1:0] apdatain1 ldo1vset[4:0] apdatain2 ldo1seq[2:0] ldo1seq [2:0] ldo1 enable confguration (read only) 000 = disabled 001 = reserved 010 = enabled at 0% of boot/por process delay control 011 = enabled at 25% of boot/por process delay control 100 = enabled at 50% of boot/por process delay control 101 = reserved 110 = reserved 111 = controlled by ldo1en [1:0] after 100% of boot/por process delay control maxim integrated 113 MAX20303 wearable power management solution www.maximintegrated.com
table 105. 0x42 C ldo2_config_write mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x42)) 0 1 0 0 0 0 1 0 apdataout0 ldo2pas dsc ldo2act dsc ldo2md ldo2en[1:0] apdataout1 ldo2vset[4:0] ldo2pas dsc ldo2 passive discharge control 0 = ldo2 output will be discharged only entering of and hard-reset modes. 1 = ldo2 output will be discharged only entering of and hard-reset modes and when the enable is low . ldo2act dsc ldo2 active discharge control 0 = ldo2 output will be actively discharged only in hard-reset mode 1 = ldo2 output will be actively discharged in hard-reset mode and also when its enable goes low ldo2md ldo2 mode control when fet is on, the output is unregulated. this setting is internally latched and can change only when the ldo2 is disabled. 0 = normal ldo2 operating mode 1 = load switch mode. fet is either fully on or of depending on state of ldo2en ldo2en [1:0] ldo2 enable confguration (efective only when ldo2seq[2:0] == 111) 00 = disabled 01 = enabled 10 = controlled by mpc_confg_write command 11 = controlled by ldodirect register ldo2vset [4:0] ldo2 output voltage settingClimited by input supply 0.9v to 4v, linear scale, 100mv increments 000000 = 0.9v 000001 = 1v 11110 = 3.9v 11111 = 4v maxim integrated 114 MAX20303 wearable power management solution www.maximintegrated.com
table 106. ldo2_config_write response table 107. 0x43 C ldo2_config_read table 108. ldo2_config_read response bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x42) 0 1 0 0 0 0 1 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x43) 0 1 0 0 0 0 1 1 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x43) 0 1 0 0 0 0 1 1 apdatain0 ldo2pas dsc ldo2act dsc ldo2md ldo2en[1:0] apdatain1 ldo2vset[4:0] apdatain2 ldo2seq[2:0] ldo2seq [2:0] ldo2 enable confguration (read only) 000 = disabled 001 = enabled always when bat/sys is present 010 = enabled at 0% of boot/ por process delay control 011 = enabled at 25% of boot/ por process delay control 100 = enabled at 50% of boot/ por process delay control 101 = reserved 110 = reserved 111 = controlled by ldo2en [1:0] after 100% of boot/por process delay control maxim integrated 115 MAX20303 wearable power management solution www.maximintegrated.com
table 109. 0x46 C chargepump_config_write table 110. chargepump_config_write response table 111. 0x47 C chargepump_config_read charge pump confguration commands mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x46) 0 1 0 0 0 1 1 0 apdataout0 cpen[1:0] apdataout1 cppscdisch cpvset cpen[1:0] charge pump enable confguration (efective only when cpseq = 111) 00 = disabled 01 = enabled 10 = controlled by mpc_confg_write command 11 = reserved cppsvdisch charge pump passive discharge enable 0 = disabled 1 = enabled cpvset 0 = 6.6v 1 = 5v bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x46) 0 1 0 0 0 1 1 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x47) 0 1 0 0 0 1 1 1 maxim integrated 116 MAX20303 wearable power management solution www.maximintegrated.com
table 112. chargepump_config_read response table 113. 0x48 C sfout_config_write sfout confguration commands bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x47) 0 1 0 0 0 1 1 1 apdatain0 cpen[1:0] apdatain1 cppscdisch cpvset apdatain2 cpseq[2:0] cpseq[2:0] charge pump enable confguration (read only) 000 = disabled 001 = reserved 010 = enabled at 0% of boot/por process delay control 011 = enabled at 25% of boot/por process delay control 100 = enabled at 50% of boot/por process delay control 101 = reserved 110 = reserved 111 = controlled by cpen after 100% of boot/por process delay control mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x48) 0 1 0 0 1 0 0 0 apdataout0 sfoutv set sfouten[1:0] sfoutv set sfout output voltage setting 0 = 5v 1 = 3.3v sfoute n[1:0] sfout ldo enable confguration 00 = disabled (regardless of chgin) 01 = enabled when chgin is present 10 = enabled when chgin is present and controlled by mpc_confg_w rite command 11 = reserved maxim integrated 117 MAX20303 wearable power management solution www.maximintegrated.com
table 114. sfout_config_write response table 115. 0x49 C sfout_config_read table 116. sfout_config_read response bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x48) 0 1 0 0 1 0 0 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x49) 0 1 0 0 1 0 0 1 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x49) 0 1 0 0 1 0 0 1 apdatain0 sfoutvset sfouten[1:0] maxim integrated 118 MAX20303 wearable power management solution www.maximintegrated.com
table 117. 0x50 C monmux_config_write table 118. monmux_config_write response table 119. 0x51 C monmux_config_read mon mux confguration commands mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x50) 0 1 0 1 0 0 0 0 apdataout0 monen monhiz monratiocfg[1:0] monctrl[2:0] monen enable signal for mon mux 0 = mon is not connected to any internal node and its state depends on monhiz 1 = mon is connected based on monctrl[2:0] confguration monhiz mon of mode condition 0 = pulled low by 59k? pulldown resistor 1 = hi-z monratio cfg[1:0] mon resistive partition selector 00 = 1:1 01 = 2:1 10 = 3:1 11 = 4:1 monctrl[2:0] mon pin source selection (80s bbm after any change of monctrl[2:0]) 000 = mon connected to a resistive partition of bat 001 = mon connected to a resistive partition of sys 010 = mon connected to a resistive partition of bk2out 011 = mon connected to a resistive partition of bk1out 100 = mon connected to a resistive partition of l2out 101 = mon connected to a resistive partition of l1out 110 = mon connected to a resistive partition of sfout 111 = mon connected to a resistive partition of bbout bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x51) 0 1 0 1 0 0 0 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x51) 0 1 0 1 0 0 0 1 maxim integrated 119 MAX20303 wearable power management solution www.maximintegrated.com
table 120. monmux_config_read response table 121. 0x53 C adc_measure_launch table 122. adc_measure_launch response bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x51) 0 1 0 1 0 0 0 1 apdatain0 monen monhiz monratiocfg[1:0] monctrl[2:0] mode launch bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x53) 0 1 0 1 0 0 1 1 apdataout0 adcavgsiz[2:0] adcsel[2:0] adcavg siz[2:0] adc averaging size adc performs 2 adcavgsiz[2:0] consecutive averaged measurements adcsel [2:0] adc channel selection 000 = sys 001 = mon 010 = thm 011 = chgin 100 = cpout 101 = bstout 11x = reserved bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x53) 0 1 0 1 0 0 1 1 apdatain0 adcresult[1:0] apdatain1 adcmax[7:0] apdatain2 adcmin[7:0] apdatain3 adcavg[7:0] adcresult adc result ready 00 = success, measurement completed 01 = adc busy 10 = adc measurement aborted by haptic automatic level compensation engine 11 = reserved adcmax[7:0] adc maximum value contains the maximum value measured by the adc adcmin[7:0] adc minimum value contains the minimum value measured by the adc adcavg[7:0] adc average value contains the average value of 2 adcavgsiz[2:0] adc measurements maxim integrated 120 MAX20303 wearable power management solution www.maximintegrated.com
table 123. 0x70 C bbst_config_write buck-boost confguration commands mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x70) 0 1 1 1 0 0 0 0 apdataout0 reserved (set to 0x00) apdataout1 bbstiset[2:0] apdataout2 bbstvset[4:0] apdataout3 bbstrip red bbstact dsc bbstpas dsc bbstmd bbstind bbsten[1:0] bbstiset [2:0] buck-boost peak current limit setting 000 = 0 (minimum on-time) 001 = 50ma 010 = 100ma 011 = 150ma 100 = 200ma 101 = 250ma 110 = 300ma 111 = 350ma bbstvset [4:0] buck-boost output voltage setting this setting is internally latched and can change only when buck-boost is disabled. 2.5v to 5.0v, linear scale, 100mv increments 000000 = 2.5v 000001 = 2.6v 011001 = 5.0v >011001 = 5.0v bbstrip red buck-boost ripple reduction leave set to 1 bbstact dsc buck-boost active discharge control 0 = actively discharged only in hard-reset 1 = actively discharged in hard-reset or enable low bbstpas dsc buck-boost passive discharge control 0 = passively discharged only in hard-reset 1 = passively discharged in hard-reset or enable low maxim integrated 121 MAX20303 wearable power management solution www.maximintegrated.com
table 123. 0x70 C bbst_config_write (continued) table 124. bbst_config_write response table 125. 0x71 C bbst_config_read bbstmd buck-boost emi reduction 0 = damping enabled 1 = damping disabled bbstind buck-boost inductance select 0 = inductance is 4.7h 1 = inductance is 3.3h bbsten [1:0] buck-boost enable confguration (efective only when bbstseq[2:0] == 1 11) 00 = disabled 01 = enabled 10 = controlled by mpc_confg_write command 11 = reserved bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x70) 0 1 1 1 0 0 0 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x71) 0 1 1 1 0 0 0 1 maxim integrated 122 MAX20303 wearable power management solution www.maximintegrated.com
table 126. bbst_config_read response bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x71) 0 1 1 1 0 0 0 1 apdatain0 clkdiv ena clkdivset[6:0] apdatain1 bbstiset[2:0] apdatain2 bbstvset[4:0] apdatain3 bbstactdsc bbstpasdsc bbstmd bbstind bbsten[1:0] apdatain4 bbstseq[2:0] bbstseq [2:0] buck-boost enable confguration (read only) 000 = disabled 001 = reserved 010 = enabled at 0% of boot/ por process delay control 011 = enabled at 25% of boot/ por process delay control 100 = enabled at 50% of boot/ por process delay control 101 = reserved 110 = reserved 111 = controlled by bbsten [1:0] after 100% of boot/por process delay control maxim integrated 123 MAX20303 wearable power management solution www.maximintegrated.com
table 127. 0xa0 C hpt_config_write0 haptic confguration commands mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xa0) 1 0 1 0 0 0 0 0 apdataout0 emfen hptsel alcmod zcchysen apdataout1 inigss[7:0] apdataout2 zccslow en fltrcntren inigss[11:8] apdataout3 inidly[4:0] apdataout4 widwdw[5:0] apdataout5 narwdw[5:0] emfen back emf and resonance detection control can also be set using opcode 0xad. 0 = disabled 1 = enabled hptsel haptic mode select can also be set using opcode 0xad. 0 = erm mode 1 = lra mode alcmod automatic level compensation (alc) control can also be set using opcode 0xad. 0 = disabled 1 = enabled zcchysen zero-crossing comparator hysteresis control can also be set using opcode 0xad 0 = disabled 1 = enabled (6mv typ). inigss [11:0] back emf initial guess can also be set using opcode 0xae. initial estimate for bemf frequency = ((25.6mhz/64) / inigss[11:0]) zccslowen zero-crossing comparator slow-down enable can also be set using opcode 0xba. 0 = zero-crossing comparator operates in normal mode. 1 = slows down the zero-crossing comparator by 2x for stronger antialiasing fltering. maxim integrated 124 MAX20303 wearable power management solution www.maximintegrated.com
table 128. hpt_config_write0 response table 129. 0xa1 C hpt_config_read0 table 127. 0xa0 C hpt_config_write0 (continued) bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xa0) 1 0 1 0 0 0 0 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xa1) 1 0 1 0 0 0 0 1 fltrcntren zero-crossing event capturing filter enable can also be set using opcode 0xba 0 = zero-crossing measured using single comparator. 1 = zero-crossing measured using an up/down counter (samples at 25.6mhz). samples the output of the comparator for the whole duration of the enabled window (wide or narrow). the counter starts at zero (mid-code) and will end at a positive or negative code depending on whether the average zero-crossing event occurs before or after than the expected time. the closer the zero-crossing is on average to the expected time, the closer to zero code returned at the end of the window will be. phase error (in 25.6mhz period units) can be calculated by dividing the resulting code at the end of the window by 2. the usage of the up/down counter enables fltering/noise rejection that could otherwise cause a systematic shift in the phase error detected. inidly[4:0] number of sine wave periods to be skipped before (re)starting bemf measurement after: start of vibration pattern. change of output polarity (e.g., braking) programmed percentage output amplitude (w.r.t. v fs ) becomes again higher than emfskipth[6:0] after having previously gone below it. can also be set using opcode 0xaf. widwdw [5:0] wide window duration for bemf zero-crossing detection (lsb is (1/64) of currently imposed sinewave period). can also be set using opcode 0xb0 narwdw [5:0] narrow window duration for bemf zero-crossing detection (lsb is (1/64) of currently imposed sinewave period). can also be set using opcode 0xb0 maxim integrated 125 MAX20303 wearable power management solution www.maximintegrated.com
table 131. 0xa2 C hpt_config_write1 table 130. hpt_config_read0 response mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xa2) 1 0 1 0 0 0 1 0 apdataout0 emfskipcyc[7:0] apdataout1 blankwdw[7:0] apdataout2 blankwdw[10:8] apdataout3 hptvfs[7:0] apdataout4 etrgodamp[7:0] apdataout5 etrgoddur [7:0] emfskipcyc [7:0] sets number of consecutive sine wave periods during which bemf detection is skipped after a bemf detection completes. can also be set using opcode 0xb1. blankwdw [10:0] zero-crossing comparator blanking time after enable (lsb = 1/25.6mhz) can also be set using opcode 0xb9. hptvfs[7:0] stores the full-scale voltage (v fs ) to which the desired percentage output amplitude is referred. the actual v fs will be the minimum between the value programmed on hptvfs[7:0] and the current sys value. lsb = 21.57mv can also be set using opcode 0xb2. etrgod amp[7:0] sets amplitude of the overdrive period as a percentage of v fs (etrg mode). lsb = 0.78%v fs . note that the msb represents the sign of the amplitude to be driven. can also be set using opcode 0xb3. etrgoddur [7:0] sets duration of the overdrive period. lsb = 5ms can also be set using opcode 0xb3. (etrg mode) bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xa1) 1 0 1 0 0 0 0 1 apdatain0 emfen hptsel alcmod zcchysen apdatain1 inigss[7:0] apdatain2 zccslow en fltrcntren inigss[11:8] apdatain3 inidly[4:0] apdatain4 widwdw[5:0] apdatain5 narwdw[5:0] maxim integrated 126 MAX20303 wearable power management solution www.maximintegrated.com
table 132. hpt_config_write1 response table 133. 0xa3 C hpt_config_read1 table 134. hpt_config_read1 response bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xa2) 1 0 1 0 0 0 1 0 mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xa3) 1 0 1 0 0 0 1 1 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xa3) 1 0 1 0 0 0 1 1 apdatain0 emfskipcyc[7:0] apdatain1 blankwdw[7:0] apdatain2 blankwdw[10:8] apdatain3 hptvfs[7:0] apdatain4 etrgodamp[7:0] apdatain5 etrgoddur [7:0] maxim integrated 127 MAX20303 wearable power management solution www.maximintegrated.com
table 135. 0xa4 hpt_config_write2 mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xa4) 1 0 1 0 0 1 0 0 apdataout0 etrgactamp[7:0] apdataout1 etrgactdur[7:0] apdataout2 etrgbrkamp[7:0] apdataout3 etrgbrkamp[7:0] apdataout4 narlpgain[2:0] widlpgain[2:0] apdataout5 narcntlck[5:0] etrgact amp[7:0] sets amplitude of the normal drive period as a percentage of v fs (etrg mode). lsb = 0.78%v fs plus sign bit. can also be set using opcode 0xb3. etrgact dur[7:0] sets duration of the normal drive period. lsb = 10ms (etrg mode) can also be set using opcode 0xb3. etrgbrk amp[7:0] sets amplitude of the braking period as a percentage of v fs (etrg mode). lsb = 0.78%v fs plus sign bit. can also be set using opcode 0xb3. etrgbrk dur[7:0] sets duration of the braking period. lsb = 5ms (etrg mode) can also be set using opcode 0xb3. narlpgain [2:0] sets gain by which the phase delay found by the zero-crossing comparator is multiplied to calculate the shift for the new sinewave period with respect to the previously imposed sinewave. this value is used when the narrow window is active. can also be set using opcode 0xb4. 000 = 1 001 = 1/2 010 = 1/4 011 = 1/8 100 = 1/16 101 = 1/32 110 = 1/64 111 = 1/128 widlpgain [2:0] sets gain by which the phase delay found by the zero-crossing comparator is multiplied to calculate the shift for the new sinewave period with respect to the previously imposed sinewave. this value is used when the wide window is active. can also be set using opcode 0xb4. 000 = 1 001 = 1/2 010 = 1/4 011 = 1/8 100 = 1/16 101 = 1/32 110 = 1/64 111 = 1/128 narcntlck [5:0] sets number of consecutive periods where phase delay falls within the narrow window before detection window is reduced from wide to narrow. can also be set using opcode 0xb5. maxim integrated 128 MAX20303 wearable power management solution www.maximintegrated.com
table 136. hpt_config_write2 response table 137. 0xa5 C hpt_config_read2 table 138. hpt_config_read2 response table 139. 0xa6 C hpt_sys_threshold_config_write table 140. hpt_sys_threshold_config_write response bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xa4) 1 0 1 0 0 1 0 0 mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xa5) 1 0 1 0 0 1 0 1 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xa5) 1 0 1 0 0 1 0 1 apdatain0 etrgactamp[7:0] apdatain1 etrgactdur[7:0] apdatain2 etrgbrkamp[7:0] apdatain3 etrgbrkamp[7:0] apdatain4 narlpgain[2:0] widlpgain[2:0] apdatain5 narcntlck[5:0] mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xa6) 1 0 1 0 0 1 1 0 apdataout0 hptsysuvlo[7:0] hptsys uvlo[7:0] haptic sys uvlo threshold sets the sys undervoltage threshold. if v sys falls below this uvlo threshold, the haptic driver is locked (hptlock = 1) and system-error[7:0] = 0x25 is issued. see opcode 0xa8 for details on restarting the haptic driver. lsb = 5.5v/255 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xa6) 1 0 1 0 0 1 1 0 maxim integrated 129 MAX20303 wearable power management solution www.maximintegrated.com
table 141. 0xa7hpt_sys_threshold_config_read table 142. hpt_sys_threshold_config_read response table 143. 0xa8 C hpt_lock_config_write table 144. hpt_lock_config_write response table 145. 0xa9 C hpt_lock_config_read table 146. hpt_lock_config_read response mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xa7) 1 0 1 0 0 1 1 1 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xa7) 1 0 1 0 0 1 1 1 apdatain0 hptsysuvlo[7:0] mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xa8) 1 0 1 0 1 0 0 0 apdataout0 hptlock hptlock haptic driver lock when a fault condition causes the haptic driver to lock, this bit can only be cleared by manually writing hptlock = 0 to opcode 0xa8. the haptic driver output will be of while hptlock = 1. 0 = unlock haptic driver 1 = lock haptic driver bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xa8) 1 0 1 0 1 0 0 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xa9) 1 0 1 0 1 0 0 1 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xa9) 1 0 1 0 1 0 0 1 apdatain0 hptlock maxim integrated 130 MAX20303 wearable power management solution www.maximintegrated.com
table 147. 0xaa C hpt_emf_threshold_config_write table 148. hpt_emf_threshold_config_write response table 149. 0xab C hpt_emf_threshold_config_read table 150. hpt_emf_threshold_config_read response table 151. 0xachpt_autotune mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xaa) 1 0 1 0 1 0 1 0 apdataout0 emfskipth[6:0] emfskipth [6:0] back emf skip threshold percentage of the full-scale output amplitude under which to skip the bemf measurement as the returned bemf would be too small to measure in these cases. bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xaa) 1 0 1 0 1 0 1 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xab) 1 0 1 0 1 0 1 1 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xab) 1 0 1 0 1 0 1 1 apdatain0 emfskipth[6:0] mode launch bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xac) 1 0 1 0 1 1 0 0 maxim integrated 131 MAX20303 wearable power management solution www.maximintegrated.com
table 156. hpt_setinitialguess response table 152. hpt_autotune response table 153. 0xad hpt_setmode table 154. hpt_setmode response table 155. 0xae hpt_setinitialguess bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xae) 1 0 1 0 1 1 1 0 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xac) 1 0 1 0 1 1 0 0 apdatain0 result[7:0] apdatain1 bemfperiod[7:0] apdatain2 bemfperiod[11:8] result [7:0] 0x00 = auto-tune done, bemfperiod[11:0] available. 0x01 = auto-tune failed. bemfperiod [11:0] resonant frequency resolved by autotune function = ((25.6mhz / 64) / bemf_freq) mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xad) 1 0 1 0 1 1 0 1 apdataout0 emfen hptsel alcmod zcchysen bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xad) 1 0 1 0 1 1 0 1 mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xae) 1 0 1 0 1 1 1 0 apdataout0 inigss[7:0] apdataout1 inigss[11:8] maxim integrated 132 MAX20303 wearable power management solution www.maximintegrated.com
table 157. 0xaf hpt_setinitialdelay table 158. hpt_setinitialdelay response table 159. 0xb0hpt_setwindow table 160. hpt_setwindow response table 161. 0xb1 C hpt_setbackemfcycle table 162. hpt_setbackemfcycle response mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xaf) 1 0 1 0 1 1 1 1 apdataout0 inidly[4:0] bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xaf) 1 0 1 0 1 1 1 1 mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xb0) 1 0 1 1 0 0 0 0 apdataout0 widwdw[5:0] apdataout1 narwdw[5:0] bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xb0) 1 0 1 1 0 0 0 0 mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xb1) 1 0 1 1 0 0 0 1 apdataout0 emfskipcyc[7:0] bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xb1) 1 0 1 1 0 0 0 1 maxim integrated 133 MAX20303 wearable power management solution www.maximintegrated.com
table 166. hpt_sethptpattern response table 167. 0xb4hpt_setgain table 168. hpt_setgain response table 163. 0xb2hpt_setfullscale table 164. hpt_setfullscale response table 165. 0xb3hpt_sethptpattern bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xb3) 1 0 1 1 0 0 1 1 mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xb4) 1 0 1 1 0 1 0 0 apdataout0 narlpgain[2:0] widlpgain[2:0] bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xb4) 1 0 1 1 0 1 0 0 mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xb2) 1 0 1 1 0 0 1 0 apdataout0 hptvfs[7:0] bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xb2) 1 0 1 1 0 0 1 0 mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xb3) 1 0 1 1 0 0 1 1 apdataout0 etrgodamp[7:0] apdataout1 etrgoddur[7:0] apdataout2 etrgactamp[7:0] apdataout3 etrgactdur[7:0] apdataout4 etrgbrkamp[7:0] apdataout5 etrgbrkdur[7:0] maxim integrated 134 MAX20303 wearable power management solution www.maximintegrated.com
table 169. 0xb5hpt_setlock table 170. hpt_setlock response table 171. 0xb6hpt_readresonancefrequency table 172. hpt_readresonancefrequency response table 173. 0xb7hpt_settimeout table 174. hpt_settimeout response mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xb5) 1 0 1 1 0 1 0 1 apdataout0 narcntlck[5:0] bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xb5) 1 0 1 1 0 1 0 1 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xb6) 1 0 1 1 0 1 1 0 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xb6) 1 0 1 1 0 1 1 0 apdatain0 bemfperiod[7:0] apdatain1 bemfperiod[11:8] mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xb7) 1 0 1 1 0 1 1 1 apdataout0 hptdrvtmo[5:0] haptic driver timeout see opcode 0xa8 for details on restarting the haptic driver. 1s step resolution. if timeout is reached, the haptic driver is locked (hptlock = 1) and systemerror[7:0] = 0x04 is issued. 000000 = disabled 000001 = 1s bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xb7) 1 0 1 1 0 1 1 1 maxim integrated 135 MAX20303 wearable power management solution www.maximintegrated.com
table 179. 0xbahpt_setzcc table 180. hpt_setzcc response table 175. 0xb8hpt_gettimeout table 176. hpt_gettimeout response table 177. 0xb9hpt_setblankingwindow table 178. hpt_setblankingwindow response mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xba) 1 0 1 1 1 0 1 0 apdataout0 zccslowen fltrcntren bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xba) 1 0 1 1 1 0 1 0 mode read bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xb8) 1 0 1 1 1 0 0 0 bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xb8) 1 0 1 1 1 0 0 0 apdatain0 hptdrvtmo[5:0] mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0xb9) 1 0 1 1 1 0 0 1 apdataout0 blankwdw[7:0] apdataout1 blankwdw[10:8] bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0xb9) 1 0 1 1 1 0 0 1 maxim integrated 136 MAX20303 wearable power management solution www.maximintegrated.com
table 181. 0x80poweroff_command table 182. poweroff_command response table 183. 0x81 C softreset_command table 184. softreset_command response power and reset commands mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x80) 1 0 0 0 0 0 0 0 apdataout0 pwrofcmd[7:0] pwrofcmd [7:0] power-of command writing 0xb2 to this register will immediately place the part in the off state. all other codes = do nothing bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x80) 1 0 0 0 0 0 0 0 apdatain0 pwrofres ponse pwrofresp onse power-of response 0 = password good, preparing of mode 1 = password is wrong mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x81) 1 0 0 0 0 0 0 1 apdataout0 softresetcmd[7:0] softreset cmd [7:0] soft-reset command writing 0xb3 to this register will force a soft-reset, all registers will be reset to their default values and the rst line will be asserted. all other codes = do nothing bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x81) 1 0 0 0 0 0 0 1 apdatain0 softreset response softreset response soft-reset response 0 = password good, preparing soft-reset 1 = password is wrong maxim integrated 137 MAX20303 wearable power management solution www.maximintegrated.com
table 187. 0x83stayon_command table 185. 0x82hard-reset_command table 186. hard-reset_command response mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x83) 1 0 0 0 0 0 1 1 apdataout0 stayon stayon stay on this bit must be set within 5s of power-on to prevent the part from shutting down and returning to the power-of condition. this bit has no efect after being set. 0 = shut down 5s after rst goes high 1 = stay on mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x82) 1 0 0 0 0 0 1 0 apdataout0 hardresetcmd [7:0] hardreset cmd[7:0] hard-reset command writing 0xb4 to this register will force the system to perform a hard-reset. all supplies will turn of and system will perform a full power-on sequence. all other codes = do nothing bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x82) 1 0 0 0 0 0 1 0 apdatain0 hardreset response hardreset response hard-reset response 0 = password good, preparing hard-reset 1 = password is wrong maxim integrated 138 MAX20303 wearable power management solution www.maximintegrated.com
table 188. 0x83stayon_command response table 189. 0x84poweroff_command_delay table 190. poweroff_command_delay response bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x83) 1 0 0 0 0 0 1 1 mode write bit b7 b6 b5 b4 b3 b2 b1 b0 apcmdout (0x84) 1 0 0 0 0 1 0 0 apdataout0 pwrofdlycmd[7:0] pwrofdly cmd [7:0] power-of command with delay writing 0xb2 to this register will place the part in the of state after a 30ms delay. all other codes = do nothing bit b7 b6 b5 b4 b3 b2 b1 b0 apresponse (0x84) 1 0 0 0 0 1 0 0 apdatain0 pwrofdly response pwrofdly response power-of with delay response 0 = password good, preparing of mode 1 = password is wrong maxim integrated 139 MAX20303 wearable power management solution www.maximintegrated.com
register summary all registers must be written and read as 16-bit words; 8-bit writes cause no effect. any bits marked x (dont care) or read only must be written with the rest of the register, but the value written is ignored by the ic. the values read from dont care bits are undefined. calculate the registers value by multiplying the 16-bit word by the registers lsb value, as shown in table 191 . vcell register (0x02) the MAX20303 measures vcell between the v dd and gnd pins. vcell is the average of four adc conver - sions. the value updates every 250ms in active mode and every 45s in hibernate mode. soc register (0x04) the ics calculate soc using the modelgauge algorithm. this register automatically adapts to variation in battery size since modelgauge naturally recognizes relative soc. the upper byte least-significant bit has units of 1%. the lower byte provides additional resolution. the first update is available approximately 1s after por of the ic. subsequent updates occur at variable intervals depending on application conditions. mode register (0x06) the mode register allows the system processor to send special commands to the ic (see figure 16 ). quick-start generates a frst estimate of ocv and soc based on the immediate cell voltage. use with caution; see the quick-start section. ensleep enables sleep mode. see the sleep mode section. hibstat indicates when the ic is in hibernate mode (read only). version register (0x08) the value of this read-only register indicates the produc - tion version of the ic. table 191. register summary fuel gauge i 2 c registers address register name 16-bit lsb description read/write default 0x02 vcell 78.125v/cell adc measurement of vcell. r 0x04 soc 1%/256 battery state of charge. r 0x06 mode initiates quick-start, reports hibernate mode, and enables sleep mode. w 0x0000 0x08 version ic production version. r 0x001_ 0x0a hibrt controls thresholds for entering and exiting hibernate mode. r/w 0x8030 0x0c config compensation to optimize performance, sleep mode, alert indicators, and confguration. r/w 0x971c 0x14 valrt confgures the vcell range outside of which alerts are generated. r/w 0x00ff 0x16 crate 0.208%/hr approximate charge or discharge rate of the battery. r 0x18 vreset/id confgures vcell threshold below which the ic resets itself, id is a one-time factory- programmable identifer. r/w 0x96__ 0x1a status indicates overvoltage, undervoltage, soc change, soc low, and reset alerts. r/w 0x01__ 0x40 to 0x7f table confgures battery parameters. w 0xfe cmd sends por command. r/w 0xffff maxim integrated 140 MAX20303 wearable power management solution www.maximintegrated.com
hibrt register (0x0a) to disable hibernate mode, set hibrt = 0x0000. to always use hibernate mode, set hibrt = 0xffff (see figure 17 ). actthr (active threshold): if at any adc sample |ocv-cell| is greater than actthr, the ic exits hibernate mode. 1 lsb = 1.25mv. hibthr (hibernate threshold). if the absolute value of crate is less than hibthr for longer than 6min, the ic enters hibernate mode. 1 lsb = 0.208%/hr. config register (0x0c) see figure 18 rcomp is an 8-bit value that can be adjusted to optimize ic performance for diferent lithium chemistries or diferent operating temperatures. con - tact maxim for instructions for optimization. the por value of rcomp is 0x97. sleep forces the ic in or out of sleep mode if mode.ensleep is set. writing 1 forces the ic to enter sleep mode, and 0 forces the ic to exit. the por value of sleep is 0. alsc (soc change alert) enables alerting when soc changes by at least 1%. each alert remains until status.sc is cleared, after which the alert automatically clears until soc again changes by 1%. do not use this alert to accumulate changes in soc. alrt (alert status bit) is set by the ic when an alert occurs. when this bit is set, the alrt pin asserts low. clear this bit to service and deassert the alrt pin. the power-up default value for alrt is 0. the status register specifes why the alrt pin was asserted. athd (empty alert threshold) sets the soc thresh - old, where an interrupt is generated on the alrt pin and can be programmed from 1% up to 32%. the value is (32 - athd)% (e.g., 00000b 32%, 00001b 31%, 00010b 30%, 11111b 1%). the por value of athd is 0x1c, or 4%. the alert only occurs on a falling edge past this threshold. figure 16. mode register format figure 17. hibrt register format figure 18. config register format msbaddress 0x06 lsbaddress 0x07 x quick- start ensleep hibstat x x x x x x x x x x x x msb lsb msb lsb msb (hibthr)address 0x0a lsb (actthr)address 0x0b 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 msb lsb msb lsb hibthr 2 0 unit: 0.208%/hr actthr 2 0 unit: 1.25mv msb (rcomp)address 0x0c lsbaddress 0x0d rcomp 7 rcomp 6 rcomp 5 rcomp 4 rcomp 3 rcomp 2 rcomp 1 rcomp 0 sleep alsc alrt athd 4 athd 3 athd 2 athd 1 athd 0 msb lsb msb lsb maxim integrated 141 MAX20303 wearable power management solution www.maximintegrated.com
valrt register (0x14) this register is divided into two thresholds: voltage alert maximum (valrt.max) and minimum (valrt. min). both registers have 1 lsb = 20mv. the ic alerts while vcell > valrt.max or vcell < valrt.min (see figure 19 ). crate register (0x16) the ic calculates an approximate value for the average soc rate of change. 1 lsb = 0.208% per hour (not for conversion to ampere). vreset/id register (0x18) see figure 20 . id is an 8-bit read-only value that is one-time pro - grammable at the factory, which can be used as an identifer to distinguish multiple cell types in produc - tion. writes to these bits are ignored. vreset[7:1] adjusts a fast analog comparator and a slower digital adc threshold to detect battery removal and reinsertion. for captive batteries, set to 2.5v. for removable batteries, set to at least 300mv below the applications empty voltage, according to the desired reset threshold for your application. if the compara - tor is enabled, the ic resets 1ms after vcell rises above the threshold. otherwise, the ic resets 250ms after the vcell register rises above the threshold. dis. set dis = 1 to disable the analog comparator in hibernate mode to save approximately 0.5a figure 19. valrt register format figure 20. vreset/id register format msb (valrt.min)address 0x14 lsb (valrt.max)address 0x15 min 7 min 6 min 5 min 4 min 3 min 2 min 1 min 0 max 7 max 6 max 5 max 4 max 3 max 2 max 1 max 0 msb lsb msb lsb unit: 20mv msb (vreset)address 0x18 lsb (id)address 0x19 2 7 2 6 2 5 2 4 2 3 2 2 2 1 dis id 6 id 5 id 4 id 3 id 2 id 1 id 0 id msb lsb msb lsb vreset 2 0 units: 40mv maxim integrated 142 MAX20303 wearable power management solution www.maximintegrated.com
status register (0x1a) an alert can indicate many different conditions. the status register identifies which alert condition was met. clear the corresponding bit after servicing the alert (see figure 21 ). reset indicator: ri (reset indicator) is set when the device powers up. any time this bit is set, the ic is not confgured, so the model should be loaded and the bit should be cleared. alert descriptors: these bits are set only when they cause an alert (e.g., if config.alsc = 0, then sc is never set). vh (voltage high) is set when vcell has been above alrt.valrtmax. vl (voltage low) is set when vcell has been below alrt.valrtmin. vr (voltage reset) is set after the device has been reset regardless of envr. hd (soc low) is set when soc crosses the value in config.athd. sc (1% soc change) is set when soc changes by at least 1% if config.alsc is set. enable or disable vreset alert: envr (enable voltage reset alert) when set to 1 as - serts the alrt pin when a voltage-reset event occurs under the conditions described by the vreset/ id register. table registers (0x40 to 0x7f) contact maxim for details on how to configure these registers. the default value is appropriate for some li+ batteries. to unlock the table registers, write 0x57 to address 0x3f, and 0x4a to address 0x3e. while table is unlocked, no modelgauge registers are updated, so relock as soon as possible by writing 0x00 to address 0x3f, and 0x00 to address 0x3e. cmd register (0xfe) writing a value of 0x5400 to this register causes the device to completely reset as if power had been removed (see the power-on reset (por) section). the reset occurs when the last bit has been clocked in. the ic does not respond with an i 2 c ack after this command sequence. figure 21. status register format msbaddress 0x1a lsbaddress 0x1b x envr sc hd vr vl vh ri x x x x x x x x msb lsb msb lsb maxim integrated 143 MAX20303 wearable power management solution www.maximintegrated.com
table 192. register bit default values register bits default value MAX20303a MAX20303b MAX20303c MAX20303d MAX20303e MAX20303g MAX20303h pfn2pud_cfg* pu/pd connected hi-z pu/pd connected hi-z hi-z hi-z hi-z pfn1pud_cfg* hi-z pu/pd connected hi-z pu/pd connected pu/pd connected pu/pd connected pu/pd connected writeprotect disabled disabled disabled disabled disabled disabled disabled ilimblank 10ms 10ms 10ms 10ms 10ms disabled disabled ilimcntl 500ma 1000ma 500ma 1000ma 200ma 500ma 500ma mtchgtmr 15min 15min 15min 15min 0min 0min 0min fchgtmr 150min 150min 150min 150min 150min 600min 600min pchgtmr 30min 30min 30min 30min 60min 30min 30min tshdntmo 5s 5s 5s 5s 5s 5s 5s chgautore disabled disabled disabled disabled auto-restart auto-restart auto-restart vpchg 2.7v 3v 2.7v 2.7v 3v 3.15v 3.15v ipchg 5% ifchg 5% ifchg 5% ifchg 5% ifchg 10% ifchg 10% ifchg 10% ifchg chgdone 10% ifchg 10% ifchg 10% ifchg 10% ifchg 5% ifchg 10% ifchg 10% ifchg chgen enabled enabled enabled enabled enabled disabled disabled chgautostp enabled enabled enabled enabled enabled enabled enabled batrechg 200mv 200mv 200mv 200mv 100mv 200mv 200mv batreg 4.20v 4.20v 4.20v 4.20v 4.20v 4.35v 4.35v coldlim 1397.65mv 1397.65mv 1397.65mv 1397.65mv 1327.06mv 1397.65mv 1397.65mv hotlim 529.41mv 529.41mv 529.41mv 529.41mv 416.47mv 529.41mv 529.41mv bstiset 325ma 100ma 325ma 100ma 275ma 425ma 425ma bstiadpten enabled enabled enabled enabled enabled enabled enabled bstfaststrt 100ms 100ms 100ms 100ms 100ms 50ms 50ms bstfetscale disabled disabled disabled disabled disabled disabled disabled bstvset 12v 13v 12v 13v 13v 20v 20v buck1fetscale enabled disabled enabled disabled disabled disabled disabled buck2fetscale disabled disabled disabled disabled disabled disabled disabled bstseq bsten after 100% bsten after 100% disabled disabled bsten after 100% bsten after 100% disabled bsten disabled disabled disabled disabled disabled disabled disabled buck1vset 1.2v 1.2v 1.2v 1.2v 1.8v 1.8v 1.8v buck1izcset 20ma 20ma 20ma 20ma 30ma 30ma 30ma buck2vset 1.8v 1.8v 1.8v 1.8v 0.95v 0.9v 0.9v buck2izcset 30ma 30ma 30ma 30ma 10ma 10ma 10ma maxim integrated 144 MAX20303 wearable power management solution www.maximintegrated.com
table 192. register bit default values (continued) register bits default value MAX20303a MAX20303b MAX20303c MAX20303d MAX20303e MAX20303g MAX20303h buck2iset 150ma 150ma 150ma 150ma 150ma 150ma 150ma buck1iset 50ma 150ma 50ma 150ma 150ma 150ma 150ma bootdly** 80ms 80ms 80ms 80ms 80ms 120ms 120ms buck2sftstrt 50ms soft-start 50ms soft-start 50ms soft-start 50ms soft-start 25ms soft-start 50ms soft-start 50ms soft-start buck1sftstrt 50ms soft-start 50ms soft-start 50ms soft-start 50ms soft-start 25ms soft-start 50ms soft-start 50ms soft-start buck2en enabled enabled enabled enabled disabled disabled disabled buck1en enabled enabled enabled enabled enabled enabled enabled ldo1md ldo ldo ldo ldo load switch ldo ldo ldo1en enabled disabled enabled disabled disabled disabled disabled ldo2md ldo ldo ldo ldo load switch ldo ldo ldo2en enabled disabled enabled disabled disabled disabled disabled passdiscena*** enabled enabled enabled enabled enabled enabled enabled ldo2vset 3.0v 3.2v 3.0v 3.2v 1.8v 3.2v 3.2v stayon enabled enabled enabled enabled enabled enabled enabled sfoutvset 3.3v 3.3v 3.3v 3.3v 5.0v 3.3v 3.3v ldo1vset 1.2v 1.1v 1.2v 1.1v 1.8v 1.2v 1.2v sysminvlt 4.0v 4.0v 4.0v 4.0v 3.6v 3.6v 3.6v sfouten chgin chgin chgin chgin disabled chgin chgin cpvset 5.0v 5.0v 5.0v 5.0v 5.0v 6.6v 6.6v cpen disabled disabled disabled disabled disabled disabled disabled cpseq cpen after 100% cpen after 100% cpen after 100% cpen after 100% cpen after 100% cpen after 100% disabled pwrrstcfg 0b0100 0b0110 0b0100 0b0110 0b0111 0b0111 0b0111 buck2seq 50% buck2en after 100% 50% buck2en after 100% buck2en after 100% buck2en after 100% buck2en after 100% buck1seq 50% buck1en after 100% 50% buck1en after 100% 0% buck1en after 100% buck1en after 100% bbsten disabled disabled disabled disabled disabled disabled disabled ldo2seq ldo2en after 100% ldo2en after 100% ldo2en after 100% ldo2en after 100% ldo2en after 100% ldo2en after 100% ldo2en after 100% ldo1seq ldo1en after 100% ldo1en after 100% ldo1en after 100% ldo1en after 100% ldo1en after 100% ldo1en after 100% ldo1en after 100% thmen enabled enabled enabled enabled enabled disabled disabled maxim integrated 145 MAX20303 wearable power management solution www.maximintegrated.com
table 192. register bit default values (continued) table 193. register bit default values register bits default value MAX20303a MAX20303b MAX20303c MAX20303d MAX20303e MAX20303g MAX20303h bbstvset 5v 5v 5v 5v 3v 5v 5v bbstiset 250ma 150ma 250ma 150ma 100ma 100ma 100ma batocthr 1000ma 1000ma 1000ma 1000ma 200ma 1000ma 1000ma bbstripred lower ripple lower ripple lower ripple lower ripple lower ripple lower ripple lower ripple bbstind 4.7h 4.7h 4.7h 4.7h 4.7h 4.7h 4.7h bbstseq bbsten after 100% bbsten after 100% bbsten after 100% bbsten after 100% bbsten after 100% bbsten after 100% bbsten after 100% emfen enabled enabled enabled enabled enabled disabled disabled hptsel lra lra lra lra erm erm erm alcmod enabled enabled enabled enabled disabled enabled enabled hptsysuvlo 3.3v 3.28v 3.3v 3.28v 3v 3v 3v hptdrvtmo 5s disabled 5s disabled disabled 10s 10s ilimmax**** 1000ma 1000ma 1000ma 1000ma 450ma 1000ma 1000ma tchgin_shdn 120c 120c 120c 120c 100c 100c 100c *see table 193 **sets t rst time. see figure 3 ***if enabled, passive discharge is enabled for all rails in off mode. ****current limit during t ilimblank *values in this row reference electrical characteristics table parameters. in off mode, vpfn_ih and vpfn_il logic levels always apply. function device configuration MAX20303a MAX20303b MAX20303c MAX20303d MAX20303e MAX20303g MAX20303h pfn1 hi-z pullup hi-z pullup pullup pullup pullup pfn2 pulldown hi-z pulldown hi-z hi-z hi-z hi-z on state logic levels* v io_ih , v io_il v pfn_ih , v pfn_il v io_ih , v io_il v pfn_ih , v pfn_il v pfn_ih , v pfn_il v pfn_ih , v pfn_il v pfn_ih , v pfn_il maxim integrated 146 MAX20303 wearable power management solution www.maximintegrated.com
table 194. i 2 c direct register default values register name default value MAX20303a MAX20303b MAX20303c MAX20303d MAX20303e MAX20303g MAX20303h 0x00 hardwareid 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x01 firmwareid 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x0b systemerror 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x0c intmask0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x0d intmask1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x0e intmask2 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x0f apdataout0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x10 apdataout1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x11 apdataout2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x12 apdataout3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x13 apdataout4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x14 apdataout5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x15 apdataout6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x17 apcmdout 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x18 apresponse 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x19 apdatain0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x1a apdatain1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x1b apdatain2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x1c apdatain3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x1d apdatain4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x1e apdatain5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 ldodirect 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x21 mpcdirectwrite 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x28 hptramaddr 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x29 hptramdatah 0x4a 0x4a 0x4a 0x4a 0x4a 0x4a 0x4a 0x2a hptramdatam 0x74 0x74 0x74 0x74 0x74 0x74 0x74 0x2b hptramdatal 0x63 0x63 0x63 0x63 0x63 0x63 0x63 0x2c ledstepdirect 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x2d led0direct 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x2e led1direct 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x2f led2direct 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x30 hptdirect0 0x04 0x04 0x04 0x04 0x04 0x04 0x04 0x31 hptdirect1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x32 hptrti2camp 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x33 hptpatramaddr 0x00 0x00 0x00 0x00 0x00 0x00 0x00 maxim integrated 147 MAX20303 wearable power management solution www.maximintegrated.com
table 195. read opcode default values opcode register default value MAX20303a MAX20303b MAX20303c MAX20303d MAX20303e MAX20303g MAX20303h gpio_confg_read (0x02) apdatain0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 gpio_control_read (0x04) apdatain0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 mpc_confg_read (0x07) apdatain0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 inputcurrent_confg_read (0x11) apdatain0 0x1e 0x1f 0x1e 0x1f 0x1b 0x06 0x06 thermalshutdown_confg_read (0x12) apdatain0 0x03 0x03 0x03 0x03 0x03 0x03 0x03 charger_confg_read (0x15) apdatain0 0x14 0x14 0x14 0x14 0x05 0x0c 0x0c apdatain1 0x41 0x61 0x41 0x41 0x64 0x75 0x75 apdatain2 0xb3 0xb3 0xb3 0xb3 0xd3 0xf6 0xf6 apdatain3 0x04 0x04 0x04 0x04 0x00 0x00 0x00 chargerthermallimits_confg_read (0x17) apdatain0 0xc6 0xc6 0xc6 0xc6 0xbc 0xc6 0xc6 apdatain1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain3 0x4b 0x4b 0x4b 0x4b 0x3b 0x4b 0x4b chargerthermalreg_confgread (0x19) apdatain0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain2 0x1f 0x1f 0x1f 0x1f 0x1f 0x1f 0x1f apdatain3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 charger_control_read (0x1b) apdatain0 0x03 0x03 0x03 0x03 0x03 0x00 0x00 charger_jeitahyst_controlread (0x1d) apdatain0 0x06 0x06 0x06 0x06 0x86 0x86 0x86 maxim integrated 148 MAX20303 wearable power management solution www.maximintegrated.com
table 195. read opcode default values (continued) opcode register default value MAX20303a MAX20303b MAX20303c MAX20303d MAX20303e MAX20303g MAX20303h bst_confg_read (0x31) apdatain0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain1 0x04 0x04 0x04 0x04 0x04 0x06 0x06 apdatain2 0x09 0x00 0x09 0x00 0x07 0x0d 0x0d apdatain3 0x1c 0x20 0x1c 0x20 0x20 0x3c 0x3c apdatain4 0x07 0x07 0x00 0x00 0x07 0x00 0x00 buck1_confg_read (0x36) apdatain0 0x02 0x00 0x02 0x00 0x20 0x00 0x00 apdatain1 0x90 0x90 0x90 0x90 0xa8 0xa8 0xa8 apdatain2 0x12 0x16 0x12 0x16 0x26 0x26 0x26 apdatain3 0x01 0x01 0x01 0x01 0x01 0x01 0x01 apdatain4 0x04 0x07 0x04 0x07 0x02 0x07 0x07 buck2_confg_read (0x3b) apdatain0 0x00 0x00 0x00 0x00 0x20 0x00 0x00 apdatain1 0x94 0x94 0x94 0x94 0x83 0x82 0x82 apdatain2 0x26 0x26 0x26 0x26 0x06 0x06 0x06 apdatain3 0x01 0x01 0x01 0x01 0x00 0x00 0x00 apdatain4 0x04 0x07 0x04 0x07 0x07 0x07 0x07 ldo1_confg_read (0x41) apdatain0 0x01 0x00 0x01 0x00 0x04 0x00 0x00 apdatain1 0x1c 0x18 0x1c 0x18 0x34 0x1c 0x1c apdatain2 0x07 0x07 0x07 0x07 0x07 0x07 0x07 ldo2_confg_read (0x43) apdatain0 0x01 0x00 0x01 0x00 0x04 0x00 0x00 apdatain1 0x15 0x17 0x15 0x17 0x09 0x17 0x17 apdatain2 0x07 0x07 0x07 0x07 0x07 0x07 0x07 chargepump_confg_read (0x47) apdatain0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain1 0x01 0x01 0x01 0x01 0x01 0x00 0x00 apdatain2 0x07 0x07 0x07 0x07 0x07 0x07 0x00 sfout_confg_read (0x49) apdatain0 0x05 0x05 0x05 0x05 0x00 0x05 0x05 monmux_confg_read (0x51) apdatain0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 bbst_confg_read (0x71) apdatain0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain1 0x05 0x03 0x05 0x03 0x02 0x02 0x02 apdatain2 0x19 0x19 0x19 0x19 0x05 0x19 0x19 apdatain3 0x50 0x50 0x50 0x50 0x50 0x50 0x50 apdatain4 0x07 0x07 0x07 0x07 0x07 0x07 0x07 maxim integrated 149 MAX20303 wearable power management solution www.maximintegrated.com
table 195. read opcode default values (continued) opcode register default value MAX20303a MAX20303b MAX20303c MAX20303d MAX20303e MAX20303g MAX20303h hpt_confg_read0 (0xa1) apdatain0 0x0e 0x0e 0x0e 0x0e 0x08 0x02 0x02 apdatain1 0xd0 0xd0 0xd0 0xd0 0xd0 0xd0 0xd0 apdatain2 0x97 0x97 0x97 0x97 0x97 0x97 0x97 apdatain3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain4 0x05 0x05 0x05 0x05 0x05 0x05 0x05 apdatain5 0x01 0x01 0x01 0x01 0x01 0x01 0x01 hpt_confg_read1 (0xa3) apdatain0 0x01 0x01 0x01 0x01 0x01 0x01 0x01 apdatain1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 apdatain2 0x02 0x02 0x02 0x02 0x02 0x02 0x02 apdatain3 0x8b 0x8b 0x8b 0x8b 0x8b 0x8b 0x8b apdatain4 0x7f 0x7f 0x7f 0x7f 0x7f 0x7f 0x7f apdatain5 0x04 0x04 0x04 0x04 0x04 0x04 0x04 hpt_confg_read2 (0xa5) apdatain0 0xcc 0xcc 0xcc 0xcc 0xcc 0xcc 0xcc apdatain1 0x32 0x32 0x32 0x32 0x32 0x32 0x32 apdatain2 0xff 0xff 0xff 0xff 0xff 0xff 0xff apdatain3 0x04 0x04 0x04 0x04 0x04 0x04 0x04 apdatain4 0x24 0x24 0x24 0x24 0x24 0x24 0x24 apdatain5 0x06 0x06 0x06 0x06 0x06 0x06 0x06 hpt_sys_threshold_confg_read (0xa7) apdatain0 0x99 0x98 0x99 0x98 0x8b 0x8b 0x8b hpt_lock_confg_read (0xa9) apdatain0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 hpt_emf_threshold_confg_read (0xab) apdatain0 0x19 0x19 0x19 0x19 0x19 0x19 0x19 maxim integrated 150 MAX20303 wearable power management solution www.maximintegrated.com
+denotes a lead (pb)-free package/rohs-compliant package. t = tape and reel *future productcontact factory for availability. chip information process: bicmos ordering information part* temp range pin-package MAX20303aewn+ -40c to +85c 56 wlp MAX20303aewn+t -40c to +85c 56 wlp MAX20303bewn+ -40c to +85c 56 wlp MAX20303bewn+t -40c to +85c 56 wlp MAX20303cewn+ -40c to +85c 56 wlp MAX20303cewn+t -40c to +85c 56 wlp MAX20303dewn+ -40c to +85c 56 wlp MAX20303dewn+t -40c to +85c 56 wlp MAX20303eewn+ -40c to +85c 56 wlp MAX20303eewn+t -40c to +85c 56 wlp MAX20303gewn+ -40c to +85c 56 wlp MAX20303gewn+t -40c to +85c 56 wlp MAX20303hewn+* -40c to +85c 56 wlp MAX20303hewn+t* -40c to +85c 56 wlp maxim integrated 151 MAX20303 wearable power management solution www.maximintegrated.com
revision history revision number revision date description pages changed 0 12/16 initial release 1 1/17 removed future product status from MAX20303a and made various other changes to register maps 19, 24, 45C49, 51, 60C62, 68C71, 73, 75, 77, 82, 103C105, 125C127, 131, 146 2 3/17 updated figure 1e and removed future product status from MAX20303d 49, 146 3 4/17 removed future product status from MAX20303c part numbers and increased v liin minimum value in electrical characteristics table 27, 146 4 5/17 corrected external cp cap, updated fgures, and added table 193 and table 194 1, 12, 31, 34, 38, 41, 43, 47, 49, 50 51, 56, 70, 93, 121, 123, 145 146C149 5 10/17 updated benefts and features section, timer suspend threshold typ in the electrical characteristics table, driver amplitude section, table 63, table 131, and table 135. corrected typos in table 44 and table 127. added a new table 193, and renumbered tables 194C195. replaced table 192. 1, 19, 57, 86, 94 124C125, 126, 128, 144C151 6 10/17 updated direct access i 2 c register map table, and removed future part designation from MAX20303gewn+ and MAX20303gewn+t in the ordering information table. 68C69, 151 ? 2017 maxim integrated products, inc. 152 maxim integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim integrated product. no circuit patent licenses are implied. maxim integrated reserves the right to change the circuitry and specifcations without notice at any time. the parametric values (min and max limits) shown in the electrical characteristics table are guaranteed. other parametric values quoted in this data sheet are provided for guidance. maxim integrated and the maxim integrated logo are trademarks of maxim integrated products, inc. MAX20303 wearable power management solution for pricing, delivery, and ordering information, please contact maxim direct at 1-888-629-4642, or visit maxim integrateds website at www.maximintegrated.com.


▲Up To Search▲   

 
Price & Availability of MAX20303

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X